local_inference/fp8-405B.ipynb (149 lines of code) (raw):

{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Run Llama-3.1-405B-FP8-Instruct " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Note that running the FP8 model requires GPUs with compute capability > 9. A potential working setup would be 8*H100**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's first install the required libraries:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "! pip install transformers accelerate" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note that for torch and [fbgemm-gpu](https://huggingface.co/docs/transformers/main/en/quantization/fbgemm_fp8) libraries, you might need to download the nighly version. Just follow the instruction here :\n", "https://pytorch.org/FBGEMM/fbgemm_gpu-development/InstallationInstructions.html\n", "\n", "Change with your version of cuda. In this example, we are installing the nighlty version with cuda 12.1\n", "```\n", "pip install torch --index-url https://download.pytorch.org/whl/cu121/\n", "pip install fbgemm-gpu --index-url https://download.pytorch.org/whl/cu121/\n", "```" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "! pip install torch fbgemm-gpu" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We import the required libraries : " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import torch\n", "from transformers import AutoModelForCausalLM, AutoTokenizer" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's load the model. The model has already been quantized with fbgemm_fp8 as specified in the model's [config.json](https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct-FP8/blob/main/config.json), so we don't need to specify a `quantization_config` and can load the quantized model as follows:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "model_name = \"meta-llama/Meta-Llama-3.1-405B-Instruct-FP8\"\n", "\n", "quantized_model = AutoModelForCausalLM.from_pretrained(\n", "\tmodel_name, device_map=\"auto\", torch_dtype=torch.bfloat16)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then, we need to prepare the inputs: " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "tokenizer = AutoTokenizer.from_pretrained(model_name)\n", "input_text = \"What are we having for dinner?\"\n", "input_ids = tokenizer(input_text, return_tensors=\"pt\").to(\"cuda\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Finally, we can generate the output ! " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "output = quantized_model.generate(**input_ids, max_new_tokens=10)\n", "print(tokenizer.decode(output[0], skip_special_tokens=True))" ] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" } }, "nbformat": 4, "nbformat_minor": 2 }