local_inference/gptq_generation.py (23 lines of code) (raw):

# INSTALLATION # pip install -q --upgrade transformers accelerate optimum # pip install -q --no-build-isolation auto-gptq # REQUIREMENTS # An instance with at least ~210 GiB of total GPU memory # An instance with at least ~210 GiB of total GPU memory when using the 405B model. # The INT4 versions of the 70B and 8B models require ~35 GiB and ~4 GiB, respectively. import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "hugging-quants/Meta-Llama-3.1-405B-Instruct-GPTQ-INT4" messages = [ {"role": "system", "content": "You are a pirate"}, {"role": "user", "content": "What's Deep Leaning?"}, ] tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto", ) inputs = tokenizer.apply_chat_template( messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True, ).to("cuda") outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256) print(tokenizer.batch_decode(outputs, skip_special_tokens=True))