def _generate_metadata()

in huggingface_sb3/push_to_hub.py [0:0]


def _generate_metadata(model_name: str, env_id: str, mean_reward: float, std_reward: float) -> ModelCardData:
    """
    Define the tags for the model card
    :param model_name: name of the model
    :param env_id: name of the environment
    :mean_reward: mean reward of the agent
    :std_reward: standard deviation of the mean reward of the agent
    """
    metadata = {}
    metadata["library_name"] = "stable-baselines3"
    metadata["tags"] = [
        env_id,
        "deep-reinforcement-learning",
        "reinforcement-learning",
        "stable-baselines3",
    ]

    # Add metrics
    eval = metadata_eval_result(
        model_pretty_name=model_name,
        task_pretty_name="reinforcement-learning",
        task_id="reinforcement-learning",
        metrics_pretty_name="mean_reward",
        metrics_id="mean_reward",
        metrics_value=f"{mean_reward:.2f} +/- {std_reward:.2f}",
        dataset_pretty_name=env_id,
        dataset_id=env_id,
    )

    # Merges both dictionaries as ModelCardData
    return ModelCardData(**metadata, **eval)