in huggingface_sb3/push_to_hub.py [0:0]
def _generate_metadata(model_name: str, env_id: str, mean_reward: float, std_reward: float) -> ModelCardData:
"""
Define the tags for the model card
:param model_name: name of the model
:param env_id: name of the environment
:mean_reward: mean reward of the agent
:std_reward: standard deviation of the mean reward of the agent
"""
metadata = {}
metadata["library_name"] = "stable-baselines3"
metadata["tags"] = [
env_id,
"deep-reinforcement-learning",
"reinforcement-learning",
"stable-baselines3",
]
# Add metrics
eval = metadata_eval_result(
model_pretty_name=model_name,
task_pretty_name="reinforcement-learning",
task_id="reinforcement-learning",
metrics_pretty_name="mean_reward",
metrics_id="mean_reward",
metrics_value=f"{mean_reward:.2f} +/- {std_reward:.2f}",
dataset_pretty_name=env_id,
dataset_id=env_id,
)
# Merges both dictionaries as ModelCardData
return ModelCardData(**metadata, **eval)