finetune_instruct_pix2pix.py [657:676]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        )
    else:
        data_files = {}
        if args.train_data_dir is not None:
            data_files["train"] = os.path.join(args.train_data_dir, "**")
        dataset = load_dataset(
            "imagefolder",
            data_files=data_files,
            cache_dir=args.cache_dir,
        )
        # See more about loading custom images at
        # https://huggingface.co/docs/datasets/main/en/image_load#imagefolder

    # Preprocessing the datasets.
    # We need to tokenize inputs and targets.
    column_names = dataset["train"].column_names

    # 6. Get the column names for input/target.
    dataset_columns = DATASET_NAME_MAPPING.get(args.dataset_name, None)
    if args.original_image_column is None:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



train_instruct_pix2pix.py [588:607]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        )
    else:
        data_files = {}
        if args.train_data_dir is not None:
            data_files["train"] = os.path.join(args.train_data_dir, "**")
        dataset = load_dataset(
            "imagefolder",
            data_files=data_files,
            cache_dir=args.cache_dir,
        )
        # See more about loading custom images at
        # https://huggingface.co/docs/datasets/main/en/image_load#imagefolder

    # Preprocessing the datasets.
    # We need to tokenize inputs and targets.
    column_names = dataset["train"].column_names

    # 6. Get the column names for input/target.
    dataset_columns = DATASET_NAME_MAPPING.get(args.dataset_name, None)
    if args.original_image_column is None:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



