data_preparation/image_utils.py (34 lines of code) (raw):
#!/usr/bin/env python
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import cv2
import numpy as np
import requests
import tensorflow as tf
from PIL import Image
# Taken from
# https://github.com/SystemErrorWang/White-box-Cartoonization/blob/master/test_code/cartoonize.py#L11
def resize_crop(image: np.ndarray) -> np.ndarray:
h, w, c = np.shape(image)
if min(h, w) > 720:
if h > w:
h, w = int(720 * h / w), 720
else:
h, w = 720, int(720 * w / h)
image = cv2.resize(image, (w, h), interpolation=cv2.INTER_AREA)
h, w = (h // 8) * 8, (w // 8) * 8
image = image[:h, :w, :]
return image
def download_image(url: str) -> np.ndarray:
image = Image.open(requests.get(url, stream=True).raw)
image = image.convert("RGB")
image = np.array(image)
return image
def preprocess_image(image: np.ndarray) -> tf.Tensor:
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
image = resize_crop(image)
image = image.astype(np.float32) / 127.5 - 1
image = np.expand_dims(image, axis=0)
image = tf.constant(image)
return image
def postprocess_image(image: tf.Tensor) -> Image.Image:
output = (image[0].numpy() + 1.0) * 127.5
output = np.clip(output, 0, 255).astype(np.uint8)
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
output_image = Image.fromarray(output)
return output_image