data/envs/babyai/create_babyai_dataset.py (121 lines of code) (raw):

import argparse import signal import gymnasium as gym import numpy as np from bot_agent import BabyAIBot as Bot from datasets import Dataset from datasets.features import Features, Sequence, Value TASK_NAME_TO_ENV_ID = { "babyai-action-obj-door": "BabyAI-ActionObjDoor-v0", "babyai-blocked-unlock-pickup": "BabyAI-BlockedUnlockPickup-v0", "babyai-boss-level-no-unlock": "BabyAI-BossLevelNoUnlock-v0", "babyai-boss-level": "BabyAI-BossLevel-v0", "babyai-find-obj-s5": "BabyAI-FindObjS5-v0", "babyai-go-to-door": "BabyAI-GoToDoor-v0", "babyai-go-to-imp-unlock": "BabyAI-GoToImpUnlock-v0", "babyai-go-to-local": "BabyAI-GoToLocal-v0", "babyai-go-to-obj-door": "BabyAI-GoToObjDoor-v0", "babyai-go-to-obj": "BabyAI-GoToObj-v0", "babyai-go-to-red-ball-grey": "BabyAI-GoToRedBallGrey-v0", "babyai-go-to-red-ball-no-dists": "BabyAI-GoToRedBallNoDists-v0", "babyai-go-to-red-ball": "BabyAI-GoToRedBall-v0", "babyai-go-to-red-blue-ball": "BabyAI-GoToRedBlueBall-v0", "babyai-go-to-seq": "BabyAI-GoToSeq-v0", "babyai-go-to": "BabyAI-GoTo-v0", "babyai-key-corridor": "BabyAI-KeyCorridor-v0", "babyai-mini-boss-level": "BabyAI-MiniBossLevel-v0", "babyai-move-two-across-s8n9": "BabyAI-MoveTwoAcrossS8N9-v0", "babyai-one-room-s8": "BabyAI-OneRoomS8-v0", "babyai-open-door": "BabyAI-OpenDoor-v0", "babyai-open-doors-order-n4": "BabyAI-OpenDoorsOrderN4-v0", "babyai-open-red-door": "BabyAI-OpenRedDoor-v0", "babyai-open-two-doors": "BabyAI-OpenTwoDoors-v0", "babyai-open": "BabyAI-Open-v0", "babyai-pickup-above": "BabyAI-PickupAbove-v0", "babyai-pickup-dist": "BabyAI-PickupDist-v0", "babyai-pickup-loc": "BabyAI-PickupLoc-v0", "babyai-pickup": "BabyAI-Pickup-v0", "babyai-put-next-local": "BabyAI-PutNextLocal-v0", "babyai-put-next": "BabyAI-PutNextS7N4-v0", "babyai-synth-loc": "BabyAI-SynthLoc-v0", "babyai-synth-seq": "BabyAI-SynthSeq-v0", "babyai-synth": "BabyAI-Synth-v0", "babyai-unblock-pickup": "BabyAI-UnblockPickup-v0", "babyai-unlock-local": "BabyAI-UnlockLocal-v0", "babyai-unlock-pickup": "BabyAI-UnlockPickup-v0", "babyai-unlock-to-unlock": "BabyAI-UnlockToUnlock-v0", "babyai-unlock": "BabyAI-Unlock-v0", } class TimeoutError(Exception): pass def timeout_handler(signum, frame): raise TimeoutError("Function call timed out") def call_with_timeout(func, args=[], kwargs={}, timeout_duration=1.0): # Set the signal handler signal.signal(signal.SIGALRM, timeout_handler) # Set the interval timer signal.setitimer(signal.ITIMER_REAL, timeout_duration, 0) try: result = func(*args, **kwargs) except TimeoutError as e: raise e finally: # Disable the interval timer signal.setitimer(signal.ITIMER_REAL, 0) return result def reset_env_and_policy(env): obs, _ = env.reset() return obs, Bot(env.env) def generate_episode(env): episode = {"text_observations": [], "discrete_observations": [], "discrete_actions": [], "rewards": []} observation, policy = reset_env_and_policy(env) t = 0 while True: episode["text_observations"].append(observation["mission"]) flattened_symbolic_obs = observation["image"].flatten() concatenated_discrete_obs = np.append(observation["direction"], flattened_symbolic_obs) episode["discrete_observations"].append(concatenated_discrete_obs) action = call_with_timeout(policy.replan, timeout_duration=0.02) observation, reward, terminated, truncated, _ = env.step(action) episode["discrete_actions"].append(int(action)) episode["rewards"].append(reward) if terminated or truncated: break t += 1 if t > 1000: raise Exception("Episode too long") return episode def create_babyai_dataset(task_name, max_num_episodes): env_id = TASK_NAME_TO_ENV_ID[task_name] env = gym.make(env_id) data = {"text_observations": [], "discrete_observations": [], "discrete_actions": [], "rewards": []} print("Starting trajectories generation") while len(data["rewards"]) < max_num_episodes: print(f"Episode {len(data['rewards']) + 1}/{max_num_episodes}") try: episode = generate_episode(env) except Exception as e: print(e) continue for k, v in episode.items(): data[k].append(v) print(f"Finished generation. Generated {len(data['rewards'])} transitions.") features = Features( { "text_observations": Sequence(Value("string")), "discrete_observations": Sequence(Sequence(Value("int64"))), "discrete_actions": Sequence(Value("int64")), "rewards": Sequence(Value("float32")), } ) dataset = Dataset.from_dict(data, features) print("Saving dataset...") dataset.save_to_disk(task_name) print("Saved dataset!") print("Pushing dataset to hub...") dataset = dataset.train_test_split(test_size=0.02) dataset.push_to_hub("jat-project/jat-dataset", task_name, branch="additional_babyai_tasks") print("Pushed dataset to hub!") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--task_name", type=str) parser.add_argument("--max_num_episodes", default=100_000, type=int) args = parser.parse_args() create_babyai_dataset(task_name=args.task_name, max_num_episodes=args.max_num_episodes)