data/envs/metaworld/generate_random_score.py (94 lines of code) (raw):
"""
This script generates the score for a random agent for all the metaworld environments and saves them in a dictionary.
"""
import json
import os
from multiprocessing import Pool
import gymnasium as gym
import metaworld # noqa: F401
import numpy as np
FILENAME = "jat/eval/rl/scores_dict.json"
TASK_NAME_TO_ENV_NAME = {
"metaworld-assembly": "assembly-v2",
"metaworld-basketball": "basketball-v2",
"metaworld-bin-picking": "bin-picking-v2",
"metaworld-box-close": "box-close-v2",
"metaworld-button-press-topdown": "button-press-topdown-v2",
"metaworld-button-press-topdown-wall": "button-press-topdown-wall-v2",
"metaworld-button-press": "button-press-v2",
"metaworld-button-press-wall": "button-press-wall-v2",
"metaworld-coffee-button": "coffee-button-v2",
"metaworld-coffee-pull": "coffee-pull-v2",
"metaworld-coffee-push": "coffee-push-v2",
"metaworld-dial-turn": "dial-turn-v2",
"metaworld-disassemble": "disassemble-v2",
"metaworld-door-close": "door-close-v2",
"metaworld-door-lock": "door-lock-v2",
"metaworld-door-open": "door-open-v2",
"metaworld-door-unlock": "door-unlock-v2",
"metaworld-drawer-close": "drawer-close-v2",
"metaworld-drawer-open": "drawer-open-v2",
"metaworld-faucet-close": "faucet-close-v2",
"metaworld-faucet-open": "faucet-open-v2",
"metaworld-hammer": "hammer-v2",
"metaworld-hand-insert": "hand-insert-v2",
"metaworld-handle-press-side": "handle-press-side-v2",
"metaworld-handle-press": "handle-press-v2",
"metaworld-handle-pull-side": "handle-pull-side-v2",
"metaworld-handle-pull": "handle-pull-v2",
"metaworld-lever-pull": "lever-pull-v2",
"metaworld-peg-insert-side": "peg-insert-side-v2",
"metaworld-peg-unplug-side": "peg-unplug-side-v2",
"metaworld-pick-out-of-hole": "pick-out-of-hole-v2",
"metaworld-pick-place": "pick-place-v2",
"metaworld-pick-place-wall": "pick-place-wall-v2",
"metaworld-plate-slide-back-side": "plate-slide-back-side-v2",
"metaworld-plate-slide-back": "plate-slide-back-v2",
"metaworld-plate-slide-side": "plate-slide-side-v2",
"metaworld-plate-slide": "plate-slide-v2",
"metaworld-push-back": "push-back-v2",
"metaworld-push": "push-v2",
"metaworld-push-wall": "push-wall-v2",
"metaworld-reach": "reach-v2",
"metaworld-reach-wall": "reach-wall-v2",
"metaworld-shelf-place": "shelf-place-v2",
"metaworld-soccer": "soccer-v2",
"metaworld-stick-pull": "stick-pull-v2",
"metaworld-stick-push": "stick-push-v2",
"metaworld-sweep-into": "sweep-into-v2",
"metaworld-sweep": "sweep-v2",
"metaworld-window-close": "window-close-v2",
"metaworld-window-open": "window-open-v2",
}
TOT_NUM_TIMESTEPS = 1_000_000
def generate_random_score(task_name):
# Make the environment
env_name = TASK_NAME_TO_ENV_NAME[task_name]
env = gym.make(env_name)
env.reset()
# Initialize the variables
all_episode_rewards = []
tot_episode_rewards = 0 # for one episode
num_timesteps = 0
terminated = truncated = False
while num_timesteps < TOT_NUM_TIMESTEPS or not (terminated or truncated):
action = env.action_space.sample()
observation, reward, terminated, truncated, info = env.step(action)
tot_episode_rewards += reward
num_timesteps += 1
if terminated or truncated:
env.reset()
all_episode_rewards.append(tot_episode_rewards)
tot_episode_rewards = 0
# Load the scores dictionary
if not os.path.exists(FILENAME):
scores_dict = {}
else:
with open(FILENAME, "r") as file:
scores_dict = json.load(file)
# Add the random scores to the dictionary
if task_name not in scores_dict:
scores_dict[task_name] = {}
scores_dict[task_name]["random"] = {"mean": np.mean(all_episode_rewards), "std": np.std(all_episode_rewards)}
# Save the dictionary to a file
with open(FILENAME, "w") as file:
scores_dict = {
task: {agent: scores_dict[task][agent] for agent in sorted(scores_dict[task])}
for task in sorted(scores_dict)
}
json.dump(scores_dict, file, indent=4)
if __name__ == "__main__":
with Pool(32) as p:
p.map(generate_random_score, TASK_NAME_TO_ENV_NAME.keys())