data/envs/metaworld/generate_random_score.py (94 lines of code) (raw):

""" This script generates the score for a random agent for all the metaworld environments and saves them in a dictionary. """ import json import os from multiprocessing import Pool import gymnasium as gym import metaworld # noqa: F401 import numpy as np FILENAME = "jat/eval/rl/scores_dict.json" TASK_NAME_TO_ENV_NAME = { "metaworld-assembly": "assembly-v2", "metaworld-basketball": "basketball-v2", "metaworld-bin-picking": "bin-picking-v2", "metaworld-box-close": "box-close-v2", "metaworld-button-press-topdown": "button-press-topdown-v2", "metaworld-button-press-topdown-wall": "button-press-topdown-wall-v2", "metaworld-button-press": "button-press-v2", "metaworld-button-press-wall": "button-press-wall-v2", "metaworld-coffee-button": "coffee-button-v2", "metaworld-coffee-pull": "coffee-pull-v2", "metaworld-coffee-push": "coffee-push-v2", "metaworld-dial-turn": "dial-turn-v2", "metaworld-disassemble": "disassemble-v2", "metaworld-door-close": "door-close-v2", "metaworld-door-lock": "door-lock-v2", "metaworld-door-open": "door-open-v2", "metaworld-door-unlock": "door-unlock-v2", "metaworld-drawer-close": "drawer-close-v2", "metaworld-drawer-open": "drawer-open-v2", "metaworld-faucet-close": "faucet-close-v2", "metaworld-faucet-open": "faucet-open-v2", "metaworld-hammer": "hammer-v2", "metaworld-hand-insert": "hand-insert-v2", "metaworld-handle-press-side": "handle-press-side-v2", "metaworld-handle-press": "handle-press-v2", "metaworld-handle-pull-side": "handle-pull-side-v2", "metaworld-handle-pull": "handle-pull-v2", "metaworld-lever-pull": "lever-pull-v2", "metaworld-peg-insert-side": "peg-insert-side-v2", "metaworld-peg-unplug-side": "peg-unplug-side-v2", "metaworld-pick-out-of-hole": "pick-out-of-hole-v2", "metaworld-pick-place": "pick-place-v2", "metaworld-pick-place-wall": "pick-place-wall-v2", "metaworld-plate-slide-back-side": "plate-slide-back-side-v2", "metaworld-plate-slide-back": "plate-slide-back-v2", "metaworld-plate-slide-side": "plate-slide-side-v2", "metaworld-plate-slide": "plate-slide-v2", "metaworld-push-back": "push-back-v2", "metaworld-push": "push-v2", "metaworld-push-wall": "push-wall-v2", "metaworld-reach": "reach-v2", "metaworld-reach-wall": "reach-wall-v2", "metaworld-shelf-place": "shelf-place-v2", "metaworld-soccer": "soccer-v2", "metaworld-stick-pull": "stick-pull-v2", "metaworld-stick-push": "stick-push-v2", "metaworld-sweep-into": "sweep-into-v2", "metaworld-sweep": "sweep-v2", "metaworld-window-close": "window-close-v2", "metaworld-window-open": "window-open-v2", } TOT_NUM_TIMESTEPS = 1_000_000 def generate_random_score(task_name): # Make the environment env_name = TASK_NAME_TO_ENV_NAME[task_name] env = gym.make(env_name) env.reset() # Initialize the variables all_episode_rewards = [] tot_episode_rewards = 0 # for one episode num_timesteps = 0 terminated = truncated = False while num_timesteps < TOT_NUM_TIMESTEPS or not (terminated or truncated): action = env.action_space.sample() observation, reward, terminated, truncated, info = env.step(action) tot_episode_rewards += reward num_timesteps += 1 if terminated or truncated: env.reset() all_episode_rewards.append(tot_episode_rewards) tot_episode_rewards = 0 # Load the scores dictionary if not os.path.exists(FILENAME): scores_dict = {} else: with open(FILENAME, "r") as file: scores_dict = json.load(file) # Add the random scores to the dictionary if task_name not in scores_dict: scores_dict[task_name] = {} scores_dict[task_name]["random"] = {"mean": np.mean(all_episode_rewards), "std": np.std(all_episode_rewards)} # Save the dictionary to a file with open(FILENAME, "w") as file: scores_dict = { task: {agent: scores_dict[task][agent] for agent in sorted(scores_dict[task])} for task in sorted(scores_dict) } json.dump(scores_dict, file, indent=4) if __name__ == "__main__": with Pool(32) as p: p.map(generate_random_score, TASK_NAME_TO_ENV_NAME.keys())