in lerobot/common/policies/tdmpc/modeling_tdmpc.py [0:0]
def __init__(self, config: TDMPCConfig):
super().__init__()
self.config = config
self._encoder = TDMPCObservationEncoder(config)
self._dynamics = nn.Sequential(
nn.Linear(config.latent_dim + config.action_feature.shape[0], config.mlp_dim),
nn.LayerNorm(config.mlp_dim),
nn.Mish(),
nn.Linear(config.mlp_dim, config.mlp_dim),
nn.LayerNorm(config.mlp_dim),
nn.Mish(),
nn.Linear(config.mlp_dim, config.latent_dim),
nn.LayerNorm(config.latent_dim),
nn.Sigmoid(),
)
self._reward = nn.Sequential(
nn.Linear(config.latent_dim + config.action_feature.shape[0], config.mlp_dim),
nn.LayerNorm(config.mlp_dim),
nn.Mish(),
nn.Linear(config.mlp_dim, config.mlp_dim),
nn.LayerNorm(config.mlp_dim),
nn.Mish(),
nn.Linear(config.mlp_dim, 1),
)
self._pi = nn.Sequential(
nn.Linear(config.latent_dim, config.mlp_dim),
nn.LayerNorm(config.mlp_dim),
nn.Mish(),
nn.Linear(config.mlp_dim, config.mlp_dim),
nn.LayerNorm(config.mlp_dim),
nn.Mish(),
nn.Linear(config.mlp_dim, config.action_feature.shape[0]),
)
self._Qs = nn.ModuleList(
[
nn.Sequential(
nn.Linear(config.latent_dim + config.action_feature.shape[0], config.mlp_dim),
nn.LayerNorm(config.mlp_dim),
nn.Tanh(),
nn.Linear(config.mlp_dim, config.mlp_dim),
nn.ELU(),
nn.Linear(config.mlp_dim, 1),
)
for _ in range(config.q_ensemble_size)
]
)
self._V = nn.Sequential(
nn.Linear(config.latent_dim, config.mlp_dim),
nn.LayerNorm(config.mlp_dim),
nn.Tanh(),
nn.Linear(config.mlp_dim, config.mlp_dim),
nn.ELU(),
nn.Linear(config.mlp_dim, 1),
)
self._init_weights()