in lerobot/common/policies/pi0/conversion_scripts/benchmark.py [0:0]
def main():
device = "cuda"
dataset_repo_id = "danaaubakirova/koch_test"
# model_name = "pi0_base"
# ckpt_torch_dir = Path.home() / f".cache/openpi/openpi-assets/checkpoints/{model_name}_pytorch"
ckpt_torch_dir = "lerobot/pi0"
dataset = LeRobotDataset(dataset_repo_id, episodes=[0])
dataloader = torch.utils.data.DataLoader(
dataset,
num_workers=0,
batch_size=1,
)
batch = next(iter(dataloader))
# To device
for k in batch:
if isinstance(batch[k], torch.Tensor):
batch[k] = batch[k].to(device=device, dtype=torch.float32)
cfg = PreTrainedConfig.from_pretrained(ckpt_torch_dir)
cfg.pretrained_path = ckpt_torch_dir
policy = make_policy(cfg, ds_meta=dataset.meta)
# policy = torch.compile(policy, mode="reduce-overhead")
warmup_iters = 10
benchmark_iters = 30
# Warmup
for _ in range(warmup_iters):
torch.cuda.synchronize()
policy.select_action(batch)
policy.reset()
torch.cuda.synchronize()
# Benchmark
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
start_event.record()
for _ in range(benchmark_iters):
policy.select_action(batch)
policy.reset()
end_event.record()
# Synchronize and measure time
torch.cuda.synchronize()
elapsed_time_ms = start_event.elapsed_time(end_event)
avg_time_per_iter = elapsed_time_ms / benchmark_iters
print(f"Average execution time per iteration: {avg_time_per_iter:.3f} ms")