src/lighteval/main_endpoint.py [53:122]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    dataset_loading_processes: Annotated[
        int, Option(help="Number of processes to use for dataset loading.", rich_help_panel=HELP_PANEL_NAME_1)
    ] = 1,
    custom_tasks: Annotated[
        Optional[str], Option(help="Path to custom tasks directory.", rich_help_panel=HELP_PANEL_NAME_1)
    ] = None,
    num_fewshot_seeds: Annotated[
        int, Option(help="Number of seeds to use for few-shot evaluation.", rich_help_panel=HELP_PANEL_NAME_1)
    ] = 1,
    load_responses_from_details_date_id: Annotated[
        Optional[str], Option(help="Load responses from details directory.", rich_help_panel=HELP_PANEL_NAME_1)
    ] = None,
    # === saving ===
    output_dir: Annotated[
        str, Option(help="Output directory for evaluation results.", rich_help_panel=HELP_PANEL_NAME_2)
    ] = "results",
    results_path_template: Annotated[
        str | None,
        Option(
            help="Template path for where to save the results, you have access to 3 variables, `output_dir`, `org` and `model`. for example a template can be `'{output_dir}/1234/{org}+{model}'`",
            rich_help_panel=HELP_PANEL_NAME_2,
        ),
    ] = None,
    push_to_hub: Annotated[
        bool, Option(help="Push results to the huggingface hub.", rich_help_panel=HELP_PANEL_NAME_2)
    ] = False,
    push_to_tensorboard: Annotated[
        bool, Option(help="Push results to tensorboard.", rich_help_panel=HELP_PANEL_NAME_2)
    ] = False,
    public_run: Annotated[
        bool, Option(help="Push results and details to a public repo.", rich_help_panel=HELP_PANEL_NAME_2)
    ] = False,
    results_org: Annotated[
        Optional[str], Option(help="Organization to push results to.", rich_help_panel=HELP_PANEL_NAME_2)
    ] = None,
    save_details: Annotated[
        bool, Option(help="Save detailed, sample per sample, results.", rich_help_panel=HELP_PANEL_NAME_2)
    ] = False,
    wandb: Annotated[
        bool,
        Option(
            help="Push results to wandb. This will only work if you have wandb installed and logged in. We use env variable to configure wandb. see here: https://docs.wandb.ai/guides/track/environment-variables/",
            rich_help_panel=HELP_PANEL_NAME_2,
        ),
    ] = False,
    # === debug ===
    max_samples: Annotated[
        Optional[int], Option(help="Maximum number of samples to evaluate on.", rich_help_panel=HELP_PANEL_NAME_3)
    ] = None,
    job_id: Annotated[
        int, Option(help="Optional job id for future reference.", rich_help_panel=HELP_PANEL_NAME_3)
    ] = 0,
):
    """
    Evaluate models using inference-endpoints as backend.
    """
    from lighteval.logging.evaluation_tracker import EvaluationTracker
    from lighteval.models.endpoints.endpoint_model import InferenceEndpointModelConfig, ServerlessEndpointModelConfig
    from lighteval.pipeline import ParallelismManager, Pipeline, PipelineParameters

    evaluation_tracker = EvaluationTracker(
        output_dir=output_dir,
        results_path_template=results_path_template,
        save_details=save_details,
        push_to_hub=push_to_hub,
        push_to_tensorboard=push_to_tensorboard,
        public=public_run,
        hub_results_org=results_org,
        wandb=wandb,
    )
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



src/lighteval/main_endpoint.py [166:238]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    dataset_loading_processes: Annotated[
        int, Option(help="Number of processes to use for dataset loading.", rich_help_panel=HELP_PANEL_NAME_1)
    ] = 1,
    custom_tasks: Annotated[
        Optional[str], Option(help="Path to custom tasks directory.", rich_help_panel=HELP_PANEL_NAME_1)
    ] = None,
    num_fewshot_seeds: Annotated[
        int, Option(help="Number of seeds to use for few-shot evaluation.", rich_help_panel=HELP_PANEL_NAME_1)
    ] = 1,
    load_responses_from_details_date_id: Annotated[
        Optional[str], Option(help="Load responses from details directory.", rich_help_panel=HELP_PANEL_NAME_1)
    ] = None,
    # === saving ===
    output_dir: Annotated[
        str, Option(help="Output directory for evaluation results.", rich_help_panel=HELP_PANEL_NAME_2)
    ] = "results",
    results_path_template: Annotated[
        str | None,
        Option(
            help="Template path for where to save the results, you have access to 3 variables, `output_dir`, `org` and `model`. for example a template can be `'{output_dir}/1234/{org}+{model}'`",
            rich_help_panel=HELP_PANEL_NAME_2,
        ),
    ] = None,
    push_to_hub: Annotated[
        bool, Option(help="Push results to the huggingface hub.", rich_help_panel=HELP_PANEL_NAME_2)
    ] = False,
    push_to_tensorboard: Annotated[
        bool, Option(help="Push results to tensorboard.", rich_help_panel=HELP_PANEL_NAME_2)
    ] = False,
    public_run: Annotated[
        bool, Option(help="Push results and details to a public repo.", rich_help_panel=HELP_PANEL_NAME_2)
    ] = False,
    results_org: Annotated[
        Optional[str], Option(help="Organization to push results to.", rich_help_panel=HELP_PANEL_NAME_2)
    ] = None,
    save_details: Annotated[
        bool, Option(help="Save detailed, sample per sample, results.", rich_help_panel=HELP_PANEL_NAME_2)
    ] = False,
    wandb: Annotated[
        bool,
        Option(
            help="Push results to wandb. This will only work if you have wandb installed and logged in. We use env variable to configure wandb. see here: https://docs.wandb.ai/guides/track/environment-variables/",
            rich_help_panel=HELP_PANEL_NAME_2,
        ),
    ] = False,
    # === debug ===
    max_samples: Annotated[
        Optional[int], Option(help="Maximum number of samples to evaluate on.", rich_help_panel=HELP_PANEL_NAME_3)
    ] = None,
    job_id: Annotated[
        int, Option(help="Optional job id for future reference.", rich_help_panel=HELP_PANEL_NAME_3)
    ] = 0,
):
    """
    Evaluate models using TGI as backend.
    """
    import yaml

    from lighteval.logging.evaluation_tracker import EvaluationTracker
    from lighteval.models.endpoints.tgi_model import TGIModelConfig
    from lighteval.models.model_input import GenerationParameters
    from lighteval.pipeline import ParallelismManager, Pipeline, PipelineParameters

    evaluation_tracker = EvaluationTracker(
        output_dir=output_dir,
        results_path_template=results_path_template,
        save_details=save_details,
        push_to_hub=push_to_hub,
        push_to_tensorboard=push_to_tensorboard,
        public=public_run,
        hub_results_org=results_org,
        wandb=wandb,
    )
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



