src/lighteval/models/endpoints/inference_providers_model.py [226:247]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            for response, context in zip(responses, contexts):
                result: list[str] = [choice.message.content for choice in response.choices]

                cur_response = ModelResponse(
                    # In empty responses, the model should return an empty string instead of None
                    text=result if result[0] else [""],
                    input=context,
                )
                results.append(cur_response)

        return dataset.get_original_order(results)

    @property
    def tokenizer(self):
        return self._tokenizer

    @property
    def add_special_tokens(self) -> bool:
        return False

    @property
    def max_length(self) -> int:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



src/lighteval/models/litellm_model.py [291:312]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            for response, context in zip(responses, contexts):
                result: list[str] = [choice.message.content for choice in response.choices]

                cur_response = ModelResponse(
                    # In empty responses, the model should return an empty string instead of None
                    text=result if result[0] else [""],
                    input=context,
                )
                results.append(cur_response)

        return dataset.get_original_order(results)

    @property
    def tokenizer(self):
        return self._tokenizer

    @property
    def add_special_tokens(self) -> bool:
        return False

    @property
    def max_length(self) -> int:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



