in src/lighteval/tasks/templates/nli.py [0:0]
def nli_natural_prompt(line: dict, task_name: str):
labels = [capitalize(get_relation_label(label, translation_literals)) for label in relations]
input_data = adapter_fn(line)
if input_data is None:
return None
premise, hypothesis, label = input_data["premise"], input_data["hypothesis"], input_data["gold_idx"]
premise = capitalize(input_data["premise"].rstrip(PUNCT))
hypothesis = decapitalize(input_data["hypothesis"].rstrip(PUNCT))
query = NLI_TEMPLATE_QUERY_CF.format(
instruction=input_data.get("instruction", ""),
premise=premise,
full_stop=translation_literals.full_stop,
confirmation_word=translation_literals.confirmation_word,
question_mark=translation_literals.question_mark,
word_space=translation_literals.word_space,
)
choices = [
NLI_TEMPLATE_CONT_CF.format(
hypothesis=hypothesis,
label=label,
comma=translation_literals.comma,
word_space=translation_literals.word_space,
sentence_space=translation_literals.sentence_space,
)
for label in labels
]
unconditioned_query = NLI_TEMPLATE_QUERY_CF.format(
instruction="",
premise="",
confirmation_word=translation_literals.confirmation_word,
question_mark=translation_literals.question_mark,
word_space="",
full_stop=translation_literals.full_stop,
)
return Doc(
task_name=task_name,
query=query,
choices=choices,
gold_index=label,
unconditioned_query=unconditioned_query,
)