llm_perf/benchmark_runners/cpu/update_llm_perf_cpu_onnxruntime.py [82:113]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            scenario=scenario_config,
            launcher=launcher_config,
            backend=backend_config,
        )

    def _get_weights_configs(self, subset) -> Dict[str, Dict[str, Any]]:
        if subset == "unquantized":
            return {
                "float32": {
                    "torch_dtype": "float32",
                    "quant_scheme": None,
                    "quant_config": {},
                },
                "float16": {
                    "torch_dtype": "float16",
                    "quant_scheme": None,
                    "quant_config": {},
                },
                "bfloat16": {
                    "torch_dtype": "bfloat16",
                    "quant_scheme": None,
                    "quant_config": {},
                },
            }
        else:
            raise ValueError(f"Unknown subset: {subset}")

    def _get_attention_configs(self) -> List[str]:
        return ["eager", "sdpa"]


if __name__ == "__main__":
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



llm_perf/benchmark_runners/cpu/update_llm_perf_cpu_pytorch.py [84:115]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            scenario=scenario_config,
            launcher=launcher_config,
            backend=backend_config,
        )

    def _get_weights_configs(self, subset) -> Dict[str, Dict[str, Any]]:
        if subset == "unquantized":
            return {
                "float32": {
                    "torch_dtype": "float32",
                    "quant_scheme": None,
                    "quant_config": {},
                },
                "float16": {
                    "torch_dtype": "float16",
                    "quant_scheme": None,
                    "quant_config": {},
                },
                "bfloat16": {
                    "torch_dtype": "bfloat16",
                    "quant_scheme": None,
                    "quant_config": {},
                },
            }
        else:
            raise ValueError(f"Unknown subset: {subset}")

    def _get_attention_configs(self) -> List[str]:
        return ["eager", "sdpa"]


if __name__ == "__main__":
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



