in llm_perf/common/benchmark_runner.py [0:0]
def run_benchmark(self, **kwargs):
model = kwargs.pop("model")
benchmark_name = self.get_benchmark_name(model, **kwargs)
subfolder = f"{benchmark_name}/{model.replace('/', '--')}"
if not self.is_benchmark_supported(**kwargs):
self.logger.info(
f"Skipping benchmark {benchmark_name} with model {model} since it is not supported"
)
return
if self.is_benchmark_conducted(self.push_repo_id, subfolder):
self.logger.info(
f"Skipping benchmark {benchmark_name} with model {model} since it was already conducted"
)
return
benchmark_config = self.get_benchmark_config(model, **kwargs)
benchmark_config.push_to_hub(
repo_id=self.push_repo_id, subfolder=subfolder, private=True
)
self.execute_and_log_benchmark(benchmark_config, subfolder)