def log_eval_samples()

in lm_eval/loggers/wandb_logger.py [0:0]


    def log_eval_samples(self, samples: Dict[str, List[Dict[str, Any]]]) -> None:
        """Log evaluation samples to W&B.

        Args:
            samples (Dict[str, List[Dict[str, Any]]]): Evaluation samples for each task.
        """
        task_names: List[str] = [
            x for x in self.task_names if x not in self.group_names
        ]

        ungrouped_tasks = []
        tasks_by_groups = {}

        for task_name in task_names:
            group_names = self.task_configs[task_name].get("group", None)
            if group_names:
                if isinstance(group_names, str):
                    group_names = [group_names]

                for group_name in group_names:
                    if not tasks_by_groups.get(group_name):
                        tasks_by_groups[group_name] = [task_name]
                    else:
                        tasks_by_groups[group_name].append(task_name)
            else:
                ungrouped_tasks.append(task_name)

        for task_name in ungrouped_tasks:
            eval_preds = samples[task_name]

            # log the samples as a W&B Table
            df = self._generate_dataset(eval_preds, self.task_configs.get(task_name))
            self.run.log({f"{task_name}_eval_results": df})

            # log the samples as a json file as W&B Artifact
            self._log_samples_as_artifact(eval_preds, task_name)

        for group, grouped_tasks in tasks_by_groups.items():
            grouped_df = pd.DataFrame()
            for task_name in grouped_tasks:
                eval_preds = samples[task_name]
                df = self._generate_dataset(
                    eval_preds, self.task_configs.get(task_name)
                )
                df["group"] = group
                df["task"] = task_name
                grouped_df = pd.concat([grouped_df, df], ignore_index=True)

                # log the samples as a json file as W&B Artifact
                self._log_samples_as_artifact(eval_preds, task_name)

            self.run.log({f"{group}_eval_results": grouped_df})