def _parse_logprobs()

in lm_eval/models/vllm_causallms.py [0:0]


    def _parse_logprobs(tokens: List, outputs, ctxlen: int) -> Tuple[float, bool]:
        """Process logprobs and tokens.

        :param tokens: list
            Input tokens (potentially left-truncated)
        :param outputs: RequestOutput
            Contains prompt_logprobs
        :param ctxlen: int
            Length of context (so we can slice them away and only keep the predictions)
        :return:
            continuation_logprobs: float
                Log probabilities of continuation tokens
            is_greedy: bool
                Whether argmax matches given continuation exactly
        """

        # The first entry of prompt_logprobs is None because the model has no previous tokens to condition on.
        continuation_logprobs_dicts = outputs.prompt_logprobs

        def coerce_logprob_to_num(logprob):
            # vLLM changed the return type of logprobs from float
            # to a Logprob object storing the float value + extra data
            # (https://github.com/vllm-project/vllm/pull/3065).
            # If we are dealing with vllm's Logprob object, return
            # the logprob value stored as an attribute. Otherwise,
            # return the object itself (which should be a float
            # for older versions of vLLM).
            return getattr(logprob, "logprob", logprob)

        continuation_logprobs_dicts = [
            {
                token: coerce_logprob_to_num(logprob)
                for token, logprob in logprob_dict.items()
            }
            if logprob_dict is not None
            else None
            for logprob_dict in continuation_logprobs_dicts
        ]

        # Calculate continuation_logprobs
        # assume ctxlen always >= 1
        continuation_logprobs = sum(
            logprob_dict.get(token)
            for token, logprob_dict in zip(
                tokens[ctxlen:], continuation_logprobs_dicts[ctxlen:]
            )
        )

        # Determine if is_greedy
        is_greedy = True
        for token, logprob_dict in zip(
            tokens[ctxlen:], continuation_logprobs_dicts[ctxlen:]
        ):
            # Get the token with the maximum log probability from the logprob_dict
            if logprob_dict:  # Ensure the logprob_dict is not None
                top_token = max(logprob_dict, key=logprob_dict.get)
                if top_token != token:
                    is_greedy = False
                    break

        return continuation_logprobs, is_greedy