lm_eval/__main__.py (401 lines of code) (raw):

import argparse import json import logging import os import sys from functools import partial from typing import Union from lm_eval import evaluator, utils from lm_eval.evaluator import request_caching_arg_to_dict from lm_eval.loggers import EvaluationTracker, WandbLogger from lm_eval.tasks import TaskManager from lm_eval.utils import handle_non_serializable, make_table, simple_parse_args_string def _int_or_none_list_arg_type( min_len: int, max_len: int, defaults: str, value: str, split_char: str = "," ): def parse_value(item): item = item.strip().lower() if item == "none": return None try: return int(item) except ValueError: raise argparse.ArgumentTypeError(f"{item} is not an integer or None") items = [parse_value(v) for v in value.split(split_char)] num_items = len(items) if num_items == 1: # Makes downstream handling the same for single and multiple values items = items * max_len elif num_items < min_len or num_items > max_len: raise argparse.ArgumentTypeError( f"Argument requires {max_len} integers or None, separated by '{split_char}'" ) elif num_items != max_len: logging.warning( f"Argument requires {max_len} integers or None, separated by '{split_char}'. " "Missing values will be filled with defaults." ) default_items = [parse_value(v) for v in defaults.split(split_char)] items.extend( default_items[num_items:] ) # extend items list with missing defaults return items def check_argument_types(parser: argparse.ArgumentParser): """ Check to make sure all CLI args are typed, raises error if not """ for action in parser._actions: if action.dest != "help" and not action.const: if action.type is None: raise ValueError( f"Argument '{action.dest}' doesn't have a type specified." ) else: continue def setup_parser() -> argparse.ArgumentParser: parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter) parser.add_argument( "--model", "-m", type=str, default="hf", help="Name of model e.g. `hf`" ) parser.add_argument( "--tasks", "-t", default=None, type=str, metavar="task1,task2", help="Comma-separated list of task names or task groupings to evaluate on.\nTo get full list of tasks, use one of the commands `lm-eval --tasks {{list_groups,list_subtasks,list_tags,list}}` to list out all available names for task groupings; only (sub)tasks; tags; or all of the above", ) parser.add_argument( "--model_args", "-a", default="", type=str, help="Comma separated string arguments for model, e.g. `pretrained=EleutherAI/pythia-160m,dtype=float32`", ) parser.add_argument( "--num_fewshot", "-f", type=int, default=None, metavar="N", help="Number of examples in few-shot context", ) parser.add_argument( "--batch_size", "-b", type=str, default=1, metavar="auto|auto:N|N", help="Acceptable values are 'auto', 'auto:N' or N, where N is an integer. Default 1.", ) parser.add_argument( "--max_batch_size", type=int, default=None, metavar="N", help="Maximal batch size to try with --batch_size auto.", ) parser.add_argument( "--device", type=str, default=None, help="Device to use (e.g. cuda, cuda:0, cpu).", ) parser.add_argument( "--output_path", "-o", default=None, type=str, metavar="DIR|DIR/file.json", help="The path to the output file where the result metrics will be saved. If the path is a directory and log_samples is true, the results will be saved in the directory. Else the parent directory will be used.", ) parser.add_argument( "--limit", "-L", type=float, default=None, metavar="N|0<N<1", help="Limit the number of examples per task. " "If <1, limit is a percentage of the total number of examples.", ) parser.add_argument( "--use_cache", "-c", type=str, default=None, metavar="DIR", help="A path to a sqlite db file for caching model responses. `None` if not caching.", ) parser.add_argument( "--cache_requests", type=str, default=None, choices=["true", "refresh", "delete"], help="Speed up evaluation by caching the building of dataset requests. `None` if not caching.", ) parser.add_argument( "--check_integrity", action="store_true", help="Whether to run the relevant part of the test suite for the tasks.", ) parser.add_argument( "--write_out", "-w", action="store_true", default=False, help="Prints the prompt for the first few documents.", ) parser.add_argument( "--log_samples", "-s", action="store_true", default=False, help="If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis. Use with --output_path.", ) parser.add_argument( "--system_instruction", type=str, default=None, help="System instruction to be used in the prompt", ) parser.add_argument( "--apply_chat_template", action="store_true", default=False, help="If True, applies the chat template to the prompt", ) parser.add_argument( "--fewshot_as_multiturn", action="store_true", default=False, help="If True, uses the fewshot as a multi-turn conversation", ) parser.add_argument( "--show_config", action="store_true", default=False, help="If True, shows the the full config of all tasks at the end of the evaluation.", ) parser.add_argument( "--include_path", type=str, default=None, metavar="DIR", help="Additional path to include if there are external tasks to include.", ) parser.add_argument( "--gen_kwargs", type=str, default=None, help=( "String arguments for model generation on greedy_until tasks," " e.g. `temperature=0,top_k=0,top_p=0`." ), ) parser.add_argument( "--verbosity", "-v", type=str.upper, default="INFO", metavar="CRITICAL|ERROR|WARNING|INFO|DEBUG", help="Controls the reported logging error level. Set to DEBUG when testing + adding new task configurations for comprehensive log output.", ) parser.add_argument( "--wandb_args", type=str, default="", help="Comma separated string arguments passed to wandb.init, e.g. `project=lm-eval,job_type=eval", ) parser.add_argument( "--hf_hub_log_args", type=str, default="", help="Comma separated string arguments passed to Hugging Face Hub's log function, e.g. `hub_results_org=EleutherAI,hub_repo_name=lm-eval-results`", ) parser.add_argument( "--predict_only", "-x", action="store_true", default=False, help="Use with --log_samples. Only model outputs will be saved and metrics will not be evaluated.", ) default_seed_string = "0,1234,1234,1234" parser.add_argument( "--seed", type=partial(_int_or_none_list_arg_type, 3, 4, default_seed_string), default=default_seed_string, # for backward compatibility help=( "Set seed for python's random, numpy, torch, and fewshot sampling.\n" "Accepts a comma-separated list of 4 values for python's random, numpy, torch, and fewshot sampling seeds, " "respectively, or a single integer to set the same seed for all four.\n" f"The values are either an integer or 'None' to not set the seed. Default is `{default_seed_string}` " "(for backward compatibility).\n" "E.g. `--seed 0,None,8,52` sets `random.seed(0)`, `torch.manual_seed(8)`, and fewshot sampling seed to 52. " "Here numpy's seed is not set since the second value is `None`.\n" "E.g, `--seed 42` sets all four seeds to 42." ), ) parser.add_argument( "--trust_remote_code", action="store_true", help="Sets trust_remote_code to True to execute code to create HF Datasets from the Hub", ) return parser def parse_eval_args(parser: argparse.ArgumentParser) -> argparse.Namespace: check_argument_types(parser) return parser.parse_args() def cli_evaluate(args: Union[argparse.Namespace, None] = None) -> None: if not args: # we allow for args to be passed externally, else we parse them ourselves parser = setup_parser() args = parse_eval_args(parser) if args.wandb_args: wandb_logger = WandbLogger(**simple_parse_args_string(args.wandb_args)) eval_logger = utils.eval_logger eval_logger.setLevel(getattr(logging, f"{args.verbosity}")) eval_logger.info(f"Verbosity set to {args.verbosity}") os.environ["TOKENIZERS_PARALLELISM"] = "false" # update the evaluation tracker args with the output path and the HF token if args.output_path: args.hf_hub_log_args += f",output_path={args.output_path}" if os.environ.get("HF_TOKEN", None): args.hf_hub_log_args += f",token={os.environ.get('HF_TOKEN')}" evaluation_tracker_args = simple_parse_args_string(args.hf_hub_log_args) evaluation_tracker = EvaluationTracker(**evaluation_tracker_args) if args.predict_only: args.log_samples = True if (args.log_samples or args.predict_only) and not args.output_path: raise ValueError( "Specify --output_path if providing --log_samples or --predict_only" ) if args.fewshot_as_multiturn and args.apply_chat_template is False: raise ValueError( "If fewshot_as_multiturn is set, apply_chat_template must be set to True." ) if args.include_path is not None: eval_logger.info(f"Including path: {args.include_path}") task_manager = TaskManager(args.verbosity, include_path=args.include_path) if "push_samples_to_hub" in evaluation_tracker_args and not args.log_samples: eval_logger.warning( "Pushing samples to the Hub requires --log_samples to be set. Samples will not be pushed to the Hub." ) if args.limit: eval_logger.warning( " --limit SHOULD ONLY BE USED FOR TESTING." "REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT." ) if args.tasks is None: eval_logger.error("Need to specify task to evaluate.") sys.exit() elif args.tasks == "list": print(task_manager.list_all_tasks()) sys.exit() elif args.tasks == "list_groups": print(task_manager.list_all_tasks(list_subtasks=False, list_tags=False)) sys.exit() elif args.tasks == "list_tags": print(task_manager.list_all_tasks(list_groups=False, list_subtasks=False)) sys.exit() elif args.tasks == "list_subtasks": print(task_manager.list_all_tasks(list_groups=False, list_tags=False)) sys.exit() else: if os.path.isdir(args.tasks): import glob task_names = [] yaml_path = os.path.join(args.tasks, "*.yaml") for yaml_file in glob.glob(yaml_path): config = utils.load_yaml_config(yaml_file) task_names.append(config) else: task_list = args.tasks.split(",") task_names = task_manager.match_tasks(task_list) for task in [task for task in task_list if task not in task_names]: if os.path.isfile(task): config = utils.load_yaml_config(task) task_names.append(config) task_missing = [ task for task in task_list if task not in task_names and "*" not in task ] # we don't want errors if a wildcard ("*") task name was used if task_missing: missing = ", ".join(task_missing) eval_logger.error( f"Tasks were not found: {missing}\n" f"{utils.SPACING}Try `lm-eval --tasks list` for list of available tasks", ) raise ValueError( f"Tasks not found: {missing}. Try `lm-eval --tasks {{list_groups,list_subtasks,list_tags,list}}` to list out all available names for task groupings; only (sub)tasks; tags; or all of the above, or pass '--verbosity DEBUG' to troubleshoot task registration issues." ) # Respect user's value passed in via CLI, otherwise default to True and add to comma-separated model args if args.trust_remote_code: eval_logger.info( "Passed `--trust_remote_code`, setting environment variable `HF_DATASETS_TRUST_REMOTE_CODE=true`" ) # HACK: import datasets and override its HF_DATASETS_TRUST_REMOTE_CODE value internally, # because it's already been determined based on the prior env var before launching our # script--`datasets` gets imported by lm_eval internally before these lines can update the env. import datasets datasets.config.HF_DATASETS_TRUST_REMOTE_CODE = True args.model_args = args.model_args + ",trust_remote_code=True" eval_logger.info(f"Selected Tasks: {task_names}") request_caching_args = request_caching_arg_to_dict( cache_requests=args.cache_requests ) results = evaluator.simple_evaluate( model=args.model, model_args=args.model_args, tasks=task_names, num_fewshot=args.num_fewshot, batch_size=args.batch_size, max_batch_size=args.max_batch_size, device=args.device, use_cache=args.use_cache, limit=args.limit, check_integrity=args.check_integrity, write_out=args.write_out, log_samples=args.log_samples, evaluation_tracker=evaluation_tracker, system_instruction=args.system_instruction, apply_chat_template=args.apply_chat_template, fewshot_as_multiturn=args.fewshot_as_multiturn, gen_kwargs=args.gen_kwargs, task_manager=task_manager, verbosity=args.verbosity, predict_only=args.predict_only, random_seed=args.seed[0], numpy_random_seed=args.seed[1], torch_random_seed=args.seed[2], fewshot_random_seed=args.seed[3], **request_caching_args, ) if results is not None: if args.log_samples: samples = results.pop("samples") dumped = json.dumps( results, indent=2, default=handle_non_serializable, ensure_ascii=False ) if args.show_config: print(dumped) batch_sizes = ",".join(map(str, results["config"]["batch_sizes"])) # Add W&B logging if args.wandb_args: try: wandb_logger.post_init(results) wandb_logger.log_eval_result() if args.log_samples: wandb_logger.log_eval_samples(samples) except Exception as e: eval_logger.info(f"Logging to Weights and Biases failed due to {e}") evaluation_tracker.save_results_aggregated( results=results, samples=samples if args.log_samples else None ) if args.log_samples: for task_name, config in results["configs"].items(): evaluation_tracker.save_results_samples( task_name=task_name, samples=samples[task_name] ) if ( evaluation_tracker.push_results_to_hub or evaluation_tracker.push_samples_to_hub ): evaluation_tracker.recreate_metadata_card() print( f"{args.model} ({args.model_args}), gen_kwargs: ({args.gen_kwargs}), limit: {args.limit}, num_fewshot: {args.num_fewshot}, " f"batch_size: {args.batch_size}{f' ({batch_sizes})' if batch_sizes else ''}" ) print(make_table(results)) if "groups" in results: print(make_table(results, "groups")) if args.wandb_args: # Tear down wandb run once all the logging is done. wandb_logger.run.finish() if __name__ == "__main__": cli_evaluate()