lm_eval/tasks/minerva_math/utils.py (229 lines of code) (raw):
import re
import signal
from typing import Dict, List, Optional
import datasets
from lm_eval.utils import eval_logger
try:
import sympy
from sympy.parsing.latex import parse_latex
except ModuleNotFoundError:
raise ModuleNotFoundError(
"`sympy` is required for generating translation task prompt templates. \
please install sympy via pip install lm-eval[math] or pip install -e .[math]",
)
# taken from
# https://github.com/wellecks/lm-evaluation-harness/blob/master/lm_eval/tasks/minerva_math.py
def doc_to_text(doc: dict) -> str:
return "Problem:" + "\n" + doc["problem"] + "\n\n" + "Solution:"
def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:
def _process_doc(doc: dict) -> dict:
out_doc = {
"problem": doc["problem"],
"solution": doc["solution"],
"answer": normalize_final_answer(
remove_boxed(last_boxed_only_string(doc["solution"]))
),
}
if getattr(doc, "few_shot", None) is not None:
out_doc["few_shot"] = True
return out_doc
return dataset.map(_process_doc)
def list_fewshot_samples() -> list[dict]:
return [
{
"problem": "Find the domain of the expression $\\frac{\\sqrt{x-2}}{\\sqrt{5-x}}$.}",
"solution": "The expressions inside each square root must be non-negative. Therefore, $x-2 \\ge 0$, so $x\\ge2$, and $5 - x \\ge 0$, so $x \\le 5$. Also, the denominator cannot be equal to zero, so $5-x>0$, which gives $x<5$. Therefore, the domain of the expression is $\\boxed{[2,5)}$.\nFinal Answer: The final answer is $[2,5)$. I hope it is correct.",
"few_shot": "1",
},
{
"problem": "If $\\det \\mathbf{A} = 2$ and $\\det \\mathbf{B} = 12,$ then find $\\det (\\mathbf{A} \\mathbf{B}).$",
"solution": "We have that $\\det (\\mathbf{A} \\mathbf{B}) = (\\det \\mathbf{A})(\\det \\mathbf{B}) = (2)(12) = \\boxed{24}.$\nFinal Answer: The final answer is $24$. I hope it is correct.",
"few_shot": "1",
},
{
"problem": "Terrell usually lifts two 20-pound weights 12 times. If he uses two 15-pound weights instead, how many times must Terrell lift them in order to lift the same total weight?",
"solution": "If Terrell lifts two 20-pound weights 12 times, he lifts a total of $2\\cdot 12\\cdot20=480$ pounds of weight. If he lifts two 15-pound weights instead for $n$ times, he will lift a total of $2\\cdot15\\cdot n=30n$ pounds of weight. Equating this to 480 pounds, we can solve for $n$:\n\\begin{align*}\n30n&=480\\\n\\Rightarrow\\qquad n&=480/30=\\boxed{16}\n\\end{align*}\nFinal Answer: The final answer is $16$. I hope it is correct.",
"few_shot": "1",
},
{
"problem": "If the system of equations\n\n\\begin{align*}\n6x-4y&=a,\\\n6y-9x &=b.\n\\end{align*}has a solution $(x, y)$ where $x$ and $y$ are both nonzero,\nfind $\\frac{a}{b},$ assuming $b$ is nonzero.",
"solution": "If we multiply the first equation by $-\\frac{3}{2}$, we obtain\n\n$$6y-9x=-\\frac{3}{2}a.$$Since we also know that $6y-9x=b$, we have\n\n$$-\\frac{3}{2}a=b\\Rightarrow\\frac{a}{b}=\\boxed{-\\frac{2}{3}}.$$\nFinal Answer: The final answer is $-\\frac{2}{3}$. I hope it is correct.",
"few_shot": "1",
},
]
def process_results(doc: dict, results: List[str]) -> Dict[str, int]:
candidates = results[0]
unnormalized_answer = get_unnormalized_answer(candidates)
answer = normalize_final_answer(unnormalized_answer)
if is_equiv(answer, doc["answer"]):
retval = 1
else:
retval = 0
results = {
"exact_match": retval,
}
return results
def last_boxed_only_string(string: str) -> Optional[str]:
idx = string.rfind("\\boxed")
if "\\boxed " in string:
return "\\boxed " + string.split("\\boxed ")[-1].split("$")[0]
if idx < 0:
idx = string.rfind("\\fbox")
if idx < 0:
return None
i = idx
right_brace_idx = None
num_left_braces_open = 0
while i < len(string):
if string[i] == "{":
num_left_braces_open += 1
if string[i] == "}":
num_left_braces_open -= 1
if num_left_braces_open == 0:
right_brace_idx = i
break
i += 1
if right_brace_idx is None:
retval = None
else:
retval = string[idx : right_brace_idx + 1]
return retval
def remove_boxed(s: str) -> str:
if "\\boxed " in s:
left = "\\boxed "
assert s[: len(left)] == left
return s[len(left) :]
left = "\\boxed{"
assert s[: len(left)] == left
assert s[-1] == "}"
return s[len(left) : -1]
class timeout:
def __init__(self, seconds=1, error_message="Timeout"):
self.seconds = seconds
self.error_message = error_message
def handle_timeout(self, signum, frame):
raise TimeoutError(self.error_message)
def __enter__(self):
signal.signal(signal.SIGALRM, self.handle_timeout)
signal.alarm(self.seconds)
def __exit__(self, type, value, traceback):
signal.alarm(0)
def is_equiv(x1: str, x2: str) -> bool:
"""
x1 and x2 are normalized latex string
"""
try:
with timeout(seconds=5):
try:
parsed_x1 = parse_latex(x1)
parsed_x2 = parse_latex(x2)
except (
sympy.parsing.latex.errors.LaTeXParsingError,
sympy.SympifyError,
TypeError,
):
eval_logger.debug(f"couldn't parse one of {x1} or {x2}")
return False
try:
diff = parsed_x1 - parsed_x2
except TypeError:
eval_logger.debug(f"couldn't subtract {x1} and {x2}")
return False
try:
if sympy.simplify(diff) == 0:
return True
else:
return False
except ValueError:
eval_logger.debug(
f"Had some trouble simplifying when comparing {x1} and {x2}"
)
except TimeoutError:
eval_logger.debug(f"Timed out comparing {x1} and {x2}")
return False
except ImportError as e:
eval_logger.error(e)
raise
except Exception as e:
eval_logger.debug(f"Failed comparing {x1} and {x2} with {e}")
return False
def get_unnormalized_answer(text: str) -> str:
INVALID_ANSWER = "[invalidanswer]"
end_seq = "I hope it is correct."
text += end_seq
match = re.search(
r"Final Answer: The final answer is(.*?). I hope it is correct.",
text,
)
if match:
return match.group(1).strip()
else:
return INVALID_ANSWER
SUBSTITUTIONS = [
("an ", ""),
("a ", ""),
(".$", "$"),
("\\$", ""),
(r"\ ", ""),
(" ", ""),
("mbox", "text"),
(",\\text{and}", ","),
("\\text{and}", ","),
("\\text{m}", "\\text{}"),
]
REMOVED_EXPRESSIONS = [
"square",
"ways",
"integers",
"dollars",
"mph",
"inches",
"ft",
"hours",
"km",
"units",
"\\ldots",
"sue",
"points",
"feet",
"minutes",
"digits",
"cents",
"degrees",
"cm",
"gm",
"pounds",
"meters",
"meals",
"edges",
"students",
"childrentickets",
"multiples",
"\\text{s}",
"\\text{.}",
"\\text{\ns}",
"\\text{}^2",
"\\text{}^3",
"\\text{\n}",
"\\text{}",
r"\mathrm{th}",
r"^\circ",
r"^{\circ}",
r"\;",
r",\!",
"{,}",
'"',
"\\dots",
]
def normalize_final_answer(final_answer: str) -> str:
"""
Normalize a final answer to a quantitative reasoning question.
Copied character for character from appendix D of Lewkowycz et al. (2022)
"""
final_answer = final_answer.split("=")[-1]
for before, after in SUBSTITUTIONS:
final_answer = final_answer.replace(before, after)
for expr in REMOVED_EXPRESSIONS:
final_answer = final_answer.replace(expr, "")
# Extract answer that is in LaTeX math, is bold,
# is surrounded by a box, etc.
final_answer = re.sub(r"(.*?)(\$)(.*?)(\$)(.*)", "$\\3$", final_answer)
final_answer = re.sub(r"(\\text\{)(.*?)(\})", "\\2", final_answer)
final_answer = re.sub(r"(\\textbf\{)(.*?)(\})", "\\2", final_answer)
final_answer = re.sub(r"(\\overline\{)(.*?)(\})", "\\2", final_answer)
final_answer = re.sub(r"(\\boxed\{)(.*)(\})", "\\2", final_answer)
# Normalize shorthand TeX:
# \fracab -> \frac{a}{b}
# \frac{abc}{bef} -> \frac{abc}{bef}
# \fracabc -> \frac{a}{b}c
# \sqrta -> \sqrt{a}
# \sqrtab -> sqrt{a}b
final_answer = re.sub(r"(frac)([^{])(.)", "frac{\\2}{\\3}", final_answer)
final_answer = re.sub(r"(sqrt)([^{])", "sqrt{\\2}", final_answer)
final_answer = final_answer.replace("$", "")
# Normalize 100,000 -> 100000
if final_answer.replace(",", "").isdigit():
final_answer = final_answer.replace(",", "")
return final_answer