lmms_eval/models/instructblip.py [138:184]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    def flatten(self, input):
        new_list = []
        for i in input:
            for j in i:
                new_list.append(j)
        return new_list

    def generate_until(self, requests: List[Instance]) -> List[str]:
        res = []

        def _collate(x):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
            toks = self.tok_encode(x[0])
            return -len(toks), x[0]

        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
        re_ords = utils.Collator([reg.args for reg in requests], _collate, grouping=True)
        chunks = re_ords.get_batched(n=self.batch_size, batch_fn=None)
        num_iters = len(requests) // self.batch_size if len(requests) % self.batch_size == 0 else len(requests) // self.batch_size + 1
        pbar = tqdm(total=num_iters, disable=(self.rank != 0), desc="Model Responding")
        for chunk in chunks:
            contexts, all_gen_kwargs, doc_to_visual, doc_id, task, split = zip(*chunk)
            task = task[0]
            split = split[0]
            visuals = [doc_to_visual[0](self.task_dict[task][split][ids]) for ids in doc_id]
            visuals = self.flatten(visuals)
            # we assume all gen kwargs in the batch are the same
            # this is safe to assume because the `grouper` object ensures it.
            gen_kwargs = all_gen_kwargs[0]

            # Set default values for until and max_new_tokens
            until = [self.tok_decode(self.eot_token_id)]

            # Update values from gen_kwargs if present
            if "until" in gen_kwargs:
                until = gen_kwargs.pop("until")
                if isinstance(until, str):
                    until = [until]
                elif not isinstance(until, list):
                    raise ValueError(f"Expected `gen_kwargs['until']` to be of type Union[str,list] but got {type(until)}")
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



lmms_eval/models/llava.py [242:288]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    def flatten(self, input):
        new_list = []
        for i in input:
            for j in i:
                new_list.append(j)
        return new_list

    def generate_until(self, requests: List[Instance]) -> List[str]:
        res = []

        def _collate(x):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
            toks = self.tok_encode(x[0])
            return -len(toks), x[0]

        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
        re_ords = utils.Collator([reg.args for reg in requests], _collate, grouping=True)
        chunks = re_ords.get_batched(n=self.batch_size, batch_fn=None)
        num_iters = len(requests) // self.batch_size if len(requests) % self.batch_size == 0 else len(requests) // self.batch_size + 1
        pbar = tqdm(total=num_iters, disable=(self.rank != 0), desc="Model Responding")
        for chunk in chunks:
            contexts, all_gen_kwargs, doc_to_visual, doc_id, task, split = zip(*chunk)
            task = task[0]
            split = split[0]
            visuals = [doc_to_visual[0](self.task_dict[task][split][ids]) for ids in doc_id]
            visuals = self.flatten(visuals)
            # we assume all gen kwargs in the batch are the same
            # this is safe to assume because the `grouper` object ensures it.
            gen_kwargs = all_gen_kwargs[0]

            # Set default values for until and max_new_tokens
            until = [self.tok_decode(self.eot_token_id)]

            # Update values from gen_kwargs if present
            if "until" in gen_kwargs:
                until = gen_kwargs.pop("until")
                if isinstance(until, str):
                    until = [until]
                elif not isinstance(until, list):
                    raise ValueError(f"Expected `gen_kwargs['until']` to be of type Union[str,list] but got {type(until)}")
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



