lmms_eval/models/instructblip.py [67:98]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                self._model = accelerator.prepare(self.model)
            else:
                self._model = accelerator.prepare_model(self.model, evaluation_mode=True)
            self.accelerator = accelerator
            if self.accelerator.is_local_main_process:
                eval_logger.info(f"Using {accelerator.num_processes} devices with data parallelism")
            self._rank = self.accelerator.local_process_index
            self._world_size = self.accelerator.num_processes
        else:
            self.model.to(self._device)
            self._rank = 0
            self._word_size = 1

    @property
    def config(self):
        # return the associated transformers.AutoConfig for the given pretrained model.
        return self._config

    @property
    def tokenizer(self):
        return self._tokenizer

    @property
    def model(self):
        # returns the model, unwrapping it if using Accelerate
        if hasattr(self, "accelerator"):
            return self.accelerator.unwrap_model(self._model)
        else:
            return self._model

    @property
    def eot_token_id(self):
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



lmms_eval/models/qwen_vl.py [63:94]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                self._model = accelerator.prepare(self.model)
            else:
                self._model = accelerator.prepare_model(self.model, evaluation_mode=True)
            self.accelerator = accelerator
            if self.accelerator.is_local_main_process:
                eval_logger.info(f"Using {accelerator.num_processes} devices with data parallelism")
            self._rank = self.accelerator.local_process_index
            self._world_size = self.accelerator.num_processes
        else:
            self.model.to(self._device)
            self._rank = 0
            self._word_size = 1

    @property
    def config(self):
        # return the associated transformers.AutoConfig for the given pretrained model.
        return self._config

    @property
    def tokenizer(self):
        return self._tokenizer

    @property
    def model(self):
        # returns the model, unwrapping it if using Accelerate
        if hasattr(self, "accelerator"):
            return self.accelerator.unwrap_model(self._model)
        else:
            return self._model

    @property
    def eot_token_id(self):
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



