lmms_eval/models/instructblip.py [106:134]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    @property
    def batch_size(self):
        return self.batch_size_per_gpu

    @property
    def device(self):
        return self._device

    @property
    def rank(self):
        return self._rank

    @property
    def world_size(self):
        return self._world_size

    def tok_encode(self, string: str, left_truncate_len=None, add_special_tokens=None) -> List[int]:
        """ """
        add_special_tokens = False if add_special_tokens is None else add_special_tokens
        encoding = self.tokenizer.encode(string, add_special_tokens=add_special_tokens)
        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
            encoding = encoding[-left_truncate_len:]
        return encoding

    def tok_decode(self, tokens):
        return self.tokenizer.decode(tokens)

    def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



lmms_eval/models/llava.py [151:179]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    @property
    def batch_size(self):
        return self.batch_size_per_gpu

    @property
    def device(self):
        return self._device

    @property
    def rank(self):
        return self._rank

    @property
    def world_size(self):
        return self._world_size

    def tok_encode(self, string: str, left_truncate_len=None, add_special_tokens=None) -> List[int]:
        """ """
        add_special_tokens = False if add_special_tokens is None else add_special_tokens
        encoding = self.tokenizer.encode(string, add_special_tokens=add_special_tokens)
        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
            encoding = encoding[-left_truncate_len:]
        return encoding

    def tok_decode(self, tokens):
        return self.tokenizer.decode(tokens)

    def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



