lmms_eval/models/fuyu.py [62:82]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        if accelerator.num_processes > 1:
            assert accelerator.distributed_type in [DistributedType.FSDP, DistributedType.MULTI_GPU, DistributedType.DEEPSPEED], "Unsupported distributed type provided. Only DDP and FSDP are supported."
            # If you want to use DistributedType.DEEPSPEED, you have to run accelerate config before using the model
            # Also, you have to select zero stage 0 (equivalent to DDP) in order to make the prepare model works
            # I tried to set different parameters in the kwargs to let default zero 2 stage works, but it didn't work.
            if accelerator.distributed_type == DistributedType.DEEPSPEED:
                kwargs = {
                    "train_micro_batch_size_per_gpu": self.batch_size_per_gpu,
                    "train_batch_size": self.batch_size_per_gpu * accelerator.num_processes,
                }
                AcceleratorState().deepspeed_plugin.deepspeed_config_process(must_match=True, **kwargs)
                eval_logger.info("Detected that you are using DistributedType.DEEPSPEED. Make sure you run `accelerate config` and set zero stage to 0")
            if accelerator.distributed_type == DistributedType.FSDP or accelerator.distributed_type == DistributedType.DEEPSPEED:
                self._model = accelerator.prepare(self.model)
            else:
                self._model = accelerator.prepare_model(self.model, evaluation_mode=True)
            self.accelerator = accelerator
            if self.accelerator.is_local_main_process:
                eval_logger.info(f"Using {accelerator.num_processes} devices with data parallelism")
            self._rank = self.accelerator.local_process_index
            self._world_size = self.accelerator.num_processes
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



lmms_eval/models/minicpm_v.py [51:71]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        if accelerator.num_processes > 1:
            assert accelerator.distributed_type in [DistributedType.FSDP, DistributedType.MULTI_GPU, DistributedType.DEEPSPEED], "Unsupported distributed type provided. Only DDP and FSDP are supported."
            # If you want to use DistributedType.DEEPSPEED, you have to run accelerate config before using the model
            # Also, you have to select zero stage 0 (equivalent to DDP) in order to make the prepare model works
            # I tried to set different parameters in the kwargs to let default zero 2 stage works, but it didn't work.
            if accelerator.distributed_type == DistributedType.DEEPSPEED:
                kwargs = {
                    "train_micro_batch_size_per_gpu": self.batch_size_per_gpu,
                    "train_batch_size": self.batch_size_per_gpu * accelerator.num_processes,
                }
                AcceleratorState().deepspeed_plugin.deepspeed_config_process(must_match=True, **kwargs)
                eval_logger.info("Detected that you are using DistributedType.DEEPSPEED. Make sure you run `accelerate config` and set zero stage to 0")
            if accelerator.distributed_type == DistributedType.FSDP or accelerator.distributed_type == DistributedType.DEEPSPEED:
                self._model = accelerator.prepare(self.model)
            else:
                self._model = accelerator.prepare_model(self.model, evaluation_mode=True)
            self.accelerator = accelerator
            if self.accelerator.is_local_main_process:
                eval_logger.info(f"Using {accelerator.num_processes} devices with data parallelism")
            self._rank = self.accelerator.local_process_index
            self._world_size = self.accelerator.num_processes
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



