lmms_eval/models/instructblip.py [50:134]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        self._config = self._model.config
        self.model.eval()
        self.model.tie_weights()
        self.batch_size_per_gpu = int(batch_size)
        if accelerator.num_processes > 1:
            assert accelerator.distributed_type in [DistributedType.FSDP, DistributedType.MULTI_GPU, DistributedType.DEEPSPEED], "Unsupported distributed type provided. Only DDP and FSDP are supported."
            # If you want to use DistributedType.DEEPSPEED, you have to run accelerate config before using the model
            # Also, you have to select zero stage 0 (equivalent to DDP) in order to make the prepare model works
            # I tried to set different parameters in the kwargs to let default zero 2 stage works, but it didn't work.
            if accelerator.distributed_type == DistributedType.DEEPSPEED:
                kwargs = {
                    "train_micro_batch_size_per_gpu": self.batch_size_per_gpu,
                    "train_batch_size": self.batch_size_per_gpu * accelerator.num_processes,
                }
                AcceleratorState().deepspeed_plugin.deepspeed_config_process(must_match=True, **kwargs)
                eval_logger.info("Detected that you are using DistributedType.DEEPSPEED. Make sure you run `accelerate config` and set zero stage to 0")
            if accelerator.distributed_type == DistributedType.FSDP or accelerator.distributed_type == DistributedType.DEEPSPEED:
                self._model = accelerator.prepare(self.model)
            else:
                self._model = accelerator.prepare_model(self.model, evaluation_mode=True)
            self.accelerator = accelerator
            if self.accelerator.is_local_main_process:
                eval_logger.info(f"Using {accelerator.num_processes} devices with data parallelism")
            self._rank = self.accelerator.local_process_index
            self._world_size = self.accelerator.num_processes
        else:
            self.model.to(self._device)
            self._rank = 0
            self._word_size = 1

    @property
    def config(self):
        # return the associated transformers.AutoConfig for the given pretrained model.
        return self._config

    @property
    def tokenizer(self):
        return self._tokenizer

    @property
    def model(self):
        # returns the model, unwrapping it if using Accelerate
        if hasattr(self, "accelerator"):
            return self.accelerator.unwrap_model(self._model)
        else:
            return self._model

    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

    @property
    def max_length(self):
        return self._max_length

    @property
    def batch_size(self):
        return self.batch_size_per_gpu

    @property
    def device(self):
        return self._device

    @property
    def rank(self):
        return self._rank

    @property
    def world_size(self):
        return self._world_size

    def tok_encode(self, string: str, left_truncate_len=None, add_special_tokens=None) -> List[int]:
        """ """
        add_special_tokens = False if add_special_tokens is None else add_special_tokens
        encoding = self.tokenizer.encode(string, add_special_tokens=add_special_tokens)
        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
            encoding = encoding[-left_truncate_len:]
        return encoding

    def tok_decode(self, tokens):
        return self.tokenizer.decode(tokens)

    def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



lmms_eval/models/minicpm_v.py [47:131]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        self._config = self._model.config
        self.model.eval()
        self.model.tie_weights()
        self.batch_size_per_gpu = int(batch_size)
        if accelerator.num_processes > 1:
            assert accelerator.distributed_type in [DistributedType.FSDP, DistributedType.MULTI_GPU, DistributedType.DEEPSPEED], "Unsupported distributed type provided. Only DDP and FSDP are supported."
            # If you want to use DistributedType.DEEPSPEED, you have to run accelerate config before using the model
            # Also, you have to select zero stage 0 (equivalent to DDP) in order to make the prepare model works
            # I tried to set different parameters in the kwargs to let default zero 2 stage works, but it didn't work.
            if accelerator.distributed_type == DistributedType.DEEPSPEED:
                kwargs = {
                    "train_micro_batch_size_per_gpu": self.batch_size_per_gpu,
                    "train_batch_size": self.batch_size_per_gpu * accelerator.num_processes,
                }
                AcceleratorState().deepspeed_plugin.deepspeed_config_process(must_match=True, **kwargs)
                eval_logger.info("Detected that you are using DistributedType.DEEPSPEED. Make sure you run `accelerate config` and set zero stage to 0")
            if accelerator.distributed_type == DistributedType.FSDP or accelerator.distributed_type == DistributedType.DEEPSPEED:
                self._model = accelerator.prepare(self.model)
            else:
                self._model = accelerator.prepare_model(self.model, evaluation_mode=True)
            self.accelerator = accelerator
            if self.accelerator.is_local_main_process:
                eval_logger.info(f"Using {accelerator.num_processes} devices with data parallelism")
            self._rank = self.accelerator.local_process_index
            self._world_size = self.accelerator.num_processes
        else:
            self.model.to(self._device)
            self._rank = 0
            self._word_size = 1

    @property
    def config(self):
        # return the associated transformers.AutoConfig for the given pretrained model.
        return self._config

    @property
    def tokenizer(self):
        return self._tokenizer

    @property
    def model(self):
        # returns the model, unwrapping it if using Accelerate
        if hasattr(self, "accelerator"):
            return self.accelerator.unwrap_model(self._model)
        else:
            return self._model

    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

    @property
    def max_length(self):
        return self._max_length

    @property
    def batch_size(self):
        return self.batch_size_per_gpu

    @property
    def device(self):
        return self._device

    @property
    def rank(self):
        return self._rank

    @property
    def world_size(self):
        return self._world_size

    def tok_encode(self, string: str, left_truncate_len=None, add_special_tokens=None) -> List[int]:
        """ """
        add_special_tokens = False if add_special_tokens is None else add_special_tokens
        encoding = self.tokenizer.encode(string, add_special_tokens=add_special_tokens)
        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
            encoding = encoding[-left_truncate_len:]
        return encoding

    def tok_decode(self, tokens):
        return self.tokenizer.decode(tokens)

    def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



