def generate_until()

in lmms_eval/models/minicpm_v.py [0:0]


    def generate_until(self, requests: List[Instance]) -> List[str]:
        res = []

        def _collate(x):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
            toks = self.tok_encode(x[0])
            return -len(toks), x[0]

        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
        re_ords = utils.Collator([reg.args for reg in requests], _collate, grouping=True)
        chunks = re_ords.get_batched(n=self.batch_size, batch_fn=None)
        num_iters = len(requests) // self.batch_size if len(requests) % self.batch_size == 0 else len(requests) // self.batch_size + 1
        pbar = tqdm(total=num_iters, disable=(self.rank != 0), desc="Model Responding")
        for chunk in chunks:
            contexts, all_gen_kwargs, doc_to_visual, doc_id, task, split = zip(*chunk)
            task = task[0]
            split = split[0]
            visuals = [doc_to_visual[0](self.task_dict[task][split][ids]) for ids in doc_id]
            visuals = self.flatten(visuals)
            # we assume all gen kwargs in the batch are the same
            # this is safe to assume because the `grouper` object ensures it.
            gen_kwargs = all_gen_kwargs[0]

            # Set default values for until and max_new_tokens
            until = [self.tok_decode(self.eot_token_id)]

            # Update values from gen_kwargs if present
            if "until" in gen_kwargs:
                until = gen_kwargs.pop("until")
                if isinstance(until, str):
                    until = [until]
                elif not isinstance(until, list):
                    raise ValueError(f"Expected `gen_kwargs['until']` to be of type Union[str,list] but got {type(until)}")
            assert self.batch_size_per_gpu == 1, "Do not support batch_size_per_gpu > 1 for now"
            assert len(visuals) == 1, "MiniCPM_V interface does not support bn_image > 1 for now"
            context = contexts[0]
            if "<image>" in context:
                # minicpm does not expect the <image> tag
                context = context.replace("<image>", "")
            msgs = [{"role": "user", "content": context}]

            gen_kwargs["image_sizes"] = [visuals[idx].size for idx in range(len(visuals))]
            if "max_new_tokens" not in gen_kwargs:
                gen_kwargs["max_new_tokens"] = 1024
            if "temperature" not in gen_kwargs:
                gen_kwargs["temperature"] = 0
            if "top_p" not in gen_kwargs:
                gen_kwargs["top_p"] = None
            if "num_beams" not in gen_kwargs:
                gen_kwargs["num_beams"] = 1
            try:
                # ominicpm does not give much information on how they do eval so I just use the chat format.
                response, context, _ = self.model.chat(
                    image=visuals[0],
                    msgs=msgs,
                    context=None,
                    tokenizer=self.tokenizer,
                    sampling=True if gen_kwargs["temperature"] > 0 else False,
                    temperature=gen_kwargs["temperature"],
                    top_p=gen_kwargs["top_p"],
                    num_beams=gen_kwargs["num_beams"],
                    max_new_tokens=gen_kwargs["max_new_tokens"],
                )
            except Exception as e:
                eval_logger.error(f"Error {e} in generating")
                cont = ""
            res.append(response)
            self.cache_hook.add_partial("generate_until", (context, gen_kwargs), response)
            pbar.update(1)
            # reorder this group of results back to original unsorted form
        res = re_ords.get_original(res)

        pbar.close()
        return res