def generate_until()

in lmms_eval/models/fuyu.py [0:0]


    def generate_until(self, requests: List[Instance]) -> List[str]:
        res = []

        def _collate(x):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
            toks = self.tok_encode(x[0])
            return -len(toks), x[0]

        re_ords = utils.Collator([reg.args for reg in requests], _collate, grouping=True)
        chunks = re_ords.get_batched(n=self.batch_size, batch_fn=None)
        num_iters = len(requests) // self.batch_size if len(requests) % self.batch_size == 0 else len(requests) // self.batch_size + 1
        pbar = tqdm(total=num_iters, disable=(self.rank != 0), desc="Model Responding")

        for chunk in chunks:
            contexts, all_gen_kwargs, doc_to_visual, doc_id, task, split = zip(*chunk)
            task = task[0]
            split = split[0]
            visuals = [doc_to_visual[0](self.task_dict[task][split][ids]) for ids in doc_id]
            visuals = self.flatten(visuals, only_get_first=True)
            gen_kwargs = all_gen_kwargs[0]

            # if isinstance(visuals[0], list):
            #     visuals = [visuals[idx][0] for idx in range(len(visuals))]  # get the first image in multi-image scenarios.

            # assert len(contexts) == self.batch_size_per_gpu, f"Expected contexts batch size {self.batch_size_per_gpu}, got {len(contexts)}"
            # assert len(visuals) == self.batch_size_per_gpu, f"Expected visuals batch size {self.batch_size_per_gpu}, got {len(visuals)}"
            formatted_contexts = [f"{context}\n" for context in contexts]
            model_inputs = self.processor(text=formatted_contexts, images=visuals, device=self.device)
            for k, v in model_inputs.items():
                model_inputs[k] = v.to(self.device, non_blocking=True) if isinstance(v, torch.Tensor) else [vv.to(self.device, non_blocking=True) for vv in v]

            for index in range(len(model_inputs["image_patches"])):
                model_inputs["image_patches"][index] = model_inputs["image_patches"][index].to(dtype=next(self.model.parameters()).dtype)

            # preconfigure gen_kwargs with defaults
            gen_kwargs["image_sizes"] = [visuals[idx].size for idx in range(len(visuals))]
            if "max_new_tokens" not in gen_kwargs:
                gen_kwargs["max_new_tokens"] = 256
            if "temperature" not in gen_kwargs:
                gen_kwargs["temperature"] = 0
            if "top_p" not in gen_kwargs:
                gen_kwargs["top_p"] = None
            if "num_beams" not in gen_kwargs:
                gen_kwargs["num_beams"] = 1
            # generation_output = self.model.generate(
            #     **model_inputs, temperature=gen_kwargs["temperature"], max_new_tokens=gen_kwargs["max_new_tokens"], top_p=gen_kwargs["top_p"], num_beams=gen_kwargs["num_beams"], pad_token_id=self.tokenizer.eos_token_id
            # )
            generation_output = self.model.generate(**model_inputs, max_new_tokens=gen_kwargs["max_new_tokens"])
            generation_texts = self.processor.batch_decode(generation_output, skip_special_tokens=True)
            response = [gen_text.split("\x04")[1].strip(" ").strip("\n") for gen_text in generation_texts]
            res.extend(response)
            pbar.update(1)

        pbar.close()
        return res