def get_multi_choice_prediction()

in lmms_eval/tasks/cmmmu/utils.py [0:0]


def get_multi_choice_prediction(response, all_choices, index2ans):
    for char in [",", ".", "!", "?", ";", ":", "'"]:
        response = response.strip(char)
    response = " " + response + " "  # add space to avoid partial match

    candidates = []

    for choice in all_choices:  # (A) (B) (C) (D)
        # Add the choice to candidates each time it appears in the response
        candidates.extend([choice for _ in range(response.count(f"({choice})"))])

    if len(candidates) == 0:
        for choice in all_choices:  # A B C D
            # Similarly, add the choice for each occurrence
            candidates.extend([choice for _ in range(response.count(f"{choice}"))])

    if len(candidates) == 0 and len(response.split()) >= 1:
        for index, ans in index2ans.items():
            # Add index for each occurrence of ans in response
            candidates.extend([index for _ in range(response.count(ans))])

    # if all above doesn't get candidates, check if the content is larger than 5 tokens and try to parse the example
    if len(candidates) == 0 and len(response.split()) >= 1:
        for index, ans in index2ans.items():
            if ans in response:
                candidates.append(index)
                index_ans = False  # it's content ans.

    if len(candidates) == 0:  # still not get answer, randomly choose one.
        return random.choice(all_choices)
        # return ''
    else:
        # Count the occurrence of each candidate
        candidate_counts = Counter(candidates)

        # Select the most frequent candidates
        max_count = max(candidate_counts.values())
        most_frequent_candidates = [c for c in all_choices if candidate_counts.get(c, 0) == max_count]

        # Combine the most frequent candidates in ABCD order
        return "".join(most_frequent_candidates)