lmms_eval/api/samplers.py (55 lines of code) (raw):

class ContextSampler: def __init__(self, docs, task, fewshot_indices=None, rnd=None) -> None: self.rnd = rnd assert self.rnd, "must pass rnd to FewShotSampler!" self.task = task self.config = task._config self.target_delimiter = self.config.target_delimiter self.fewshot_delimiter = self.config.fewshot_delimiter self.doc_to_text = self.task.doc_to_text self.doc_to_target = self.task.doc_to_target self.doc_to_choice = self.task.doc_to_choice self.docs = docs # HF dataset split, provided by task._fewshot_docs() if fewshot_indices: # subset few-shot docs from self.docs = self.docs.select(fewshot_indices) def get_context(self, doc, num_fewshot): # draw an extra fewshot sample if using same split as evaluating on n_samples = num_fewshot + 1 if self.config.fewshot_split == self.config.test_split else num_fewshot # draw `n_samples` docs from fewshot_docs fewshotex = self.sample(n_samples) # get rid of the doc that's the one we're evaluating, if it's in the fewshot # TODO: should we just stop people from using fewshot from same split as evaluating? selected_docs = [x for x in fewshotex if x != doc][:num_fewshot] labeled_examples = ( self.fewshot_delimiter.join( [ # TODO: is separating doc_to_text and doc_to_target by one space always desired? (self.doc_to_text(doc) if (self.config.doc_to_choice is None or type(self.doc_to_text(doc)) is str) else self.doc_to_choice(doc)[self.doc_to_text(doc)]) + self.target_delimiter + ( str(self.doc_to_target(doc)[0]) if type(self.doc_to_target(doc)) is list else self.doc_to_target(doc) if (self.config.doc_to_choice is None or type(self.doc_to_target(doc)) is str) else str(self.doc_to_choice(doc)[self.doc_to_target(doc)]) ) for doc in selected_docs ] ) + self.fewshot_delimiter ) return labeled_examples def sample(self, n): """ Draw `n` samples from our fewshot docs. This method should be overridden by subclasses. """ return self.rnd.sample(self.docs, n) class FirstNSampler(ContextSampler): def sample(self, n) -> None: """ Draw the first `n` samples in order from the specified split. Used for tasks with "canonical" ordered fewshot examples, such as MMLU and CMMLU. """ assert n <= len(self.docs), f"Error: number of fewshot samples requested exceeds the {len(self.docs)} that are available." return self.docs[:n] class BalancedSampler(ContextSampler): def sample(self, n) -> None: """ TODO: this should return approximately class-balanced samples from our fewshot examples. TODO: what order should they be in? maybe random? """ pass class ManualSampler(ContextSampler): def sample(self, n) -> None: """ """ pass SAMPLER_REGISTRY = { "default": ContextSampler, "first_n": FirstNSampler, } def get_sampler(name): try: return SAMPLER_REGISTRY[name] except KeyError: raise ValueError(f"Attempted to use contextsampler '{name}', but no sampling strategy for this name found! Supported model names: {', '.join(SAMPLER_REGISTRY.keys())}")