lmms_eval/logging_utils.py (259 lines of code) (raw):

# Code mostly from: https://github.com/EleutherAI/lm-evaluation-harness/pull/1339, credit to: https://github.com/ayulockin import copy import logging import re import os import json import glob import pandas as pd import numpy as np from datetime import datetime from typing import Any, Dict, List, Literal, Tuple, Union from packaging.version import Version from lmms_eval import utils import tenacity logger = logging.getLogger(__name__) try: import wandb assert Version(wandb.__version__) >= Version("0.13.6") if Version(wandb.__version__) < Version("0.13.6"): wandb.require("report-editing:v0") except Exception as e: logger.warning("To use the wandb reporting functionality please install wandb>=0.13.6.\n" "To install the latest version of wandb run `pip install wandb --upgrade`\n" f"{e}") def remove_none_pattern(input_string): # Define the pattern to match ',none' at the end of the string pattern = re.compile(r",none$") # Use sub() to replace ',none' with an empty string result = re.sub(pattern, "", input_string) # check if the input_string changed removed = result != input_string return result, removed def _handle_non_serializable(o: Any) -> Union[int, str, list]: """Handle non-serializable objects by converting them to serializable types. Args: o (Any): The object to be handled. Returns: Union[int, str, list]: The converted object. If the object is of type np.int64 or np.int32, it will be converted to int. If the object is of type set, it will be converted to a list. Otherwise, it will be converted to str. """ if isinstance(o, np.int64) or isinstance(o, np.int32): return int(o) elif isinstance(o, set): return list(o) else: return str(o) def get_wandb_printer() -> Literal["Printer"]: """Returns a wandb printer instance for pretty stdout.""" from wandb.sdk.lib.printer import get_printer from wandb.sdk.wandb_settings import Settings printer = get_printer(Settings()._jupyter) return printer # class WandbLogger: class WandbLogger: def __init__(self, args): self.wandb_args = utils.simple_parse_args_string(args.wandb_args) self.args = args self.all_args_dict = vars(args) self.printer = get_wandb_printer() try: self.init_run() except Exception as e: logger.warning(f"Failed to initialize W&B run: {e}") os.environ["WANDB_MODE"] = "offline" self.init_run() def finish(self): self.run.finish() @tenacity.retry(wait=tenacity.wait_fixed(5), stop=tenacity.stop_after_attempt(5)) def init_run(self): if "name" not in self.wandb_args: if "config" in self.all_args_dict and self.all_args_dict["config"] != "": self.wandb_args["name"] = self.all_args_dict["config"].split("/")[-1].replace(".yaml", "") + "_" + self.args.log_samples_suffix else: task_names = self.args.tasks.replace(",", "/") self.wandb_args["name"] = f"{self.args.model}_{task_names}_{self.args.log_samples_suffix}" if self.args.num_fewshot: self.wandb_args["name"] += f"_{self.args.num_fewshot}shot" if "project" not in self.wandb_args: self.wandb_args["project"] = "lmms-eval" # initialize a W&B run self.run = wandb.init(**self.wandb_args) def post_init(self, results: Dict[str, Any]) -> None: self.results: Dict[str, Any] = copy.deepcopy(results) self.task_names: List[str] = list(results.get("results", {}).keys()) self.group_names: List[str] = list(results.get("groups", {}).keys()) def _get_config(self) -> Dict[str, Any]: """Get configuration parameters.""" self.task_configs = self.results.get("configs", {}) cli_configs = self.results.get("config", {}) configs = { "task_configs": self.task_configs, "cli_configs": cli_configs, } return configs def _sanitize_results_dict(self) -> Tuple[Dict[str, str], Dict[str, Any]]: """Sanitize the results dictionary.""" _results = copy.deepcopy(self.results.get("results", dict())) # Remove None from the metric string name tmp_results = copy.deepcopy(_results) for task_name in self.task_names: task_result = tmp_results.get(task_name, dict()) for metric_name, metric_value in task_result.items(): _metric_name, removed = remove_none_pattern(metric_name) if removed: _results[task_name][_metric_name] = metric_value _results[task_name].pop(metric_name) # remove string valued keys from the results dict wandb_summary = {} for task in self.task_names: task_result = _results.get(task, dict()) for metric_name, metric_value in task_result.items(): if isinstance(metric_value, str): wandb_summary[f"{task}/{metric_name}"] = metric_value for summary_metric, summary_value in wandb_summary.items(): _task, _summary_metric = summary_metric.split("/") _results[_task].pop(_summary_metric) tmp_results = copy.deepcopy(_results) for task_name, task_results in tmp_results.items(): for metric_name, metric_value in task_results.items(): _results[f"{task_name}/{metric_name}"] = metric_value _results[task_name].pop(metric_name) for task in self.task_names: _results.pop(task) return wandb_summary, _results def _log_results_as_table(self) -> None: """Generate and log evaluation results as a table to W&B.""" columns = [ "Model", "Args", "Tasks", "Version", "Filter", "num_fewshot", "Metric", "Value", "Stderr", ] def make_table(columns: List[str], key: str = "results"): table = wandb.Table(columns=columns) results = copy.deepcopy(self.results) model_name = results.get("model_configs").get("model") model_args = results.get("model_configs").get("model_args") for k, dic in results.get(key).items(): if k in self.group_names and not key == "groups": continue version = results.get("versions").get(k) if version == "N/A": version = None n = results.get("n-shot").get(k) for (mf), v in dic.items(): m, _, f = mf.partition(",") if m.endswith("_stderr"): continue if m == "alias": continue if m + "_stderr" + "," + f in dic: se = dic[m + "_stderr" + "," + f] if se != "N/A": se = "%.4f" % se data = [model_name, model_args, k, version, f, n, m, str(v), str(se)] if key == "groups": data = [self.group_names] + data table.add_data(*data) else: data = [model_name, model_args, k, version, f, n, m, str(v), ""] if key == "groups": data = [self.group_names] + data table.add_data(*data) return table # log the complete eval result to W&B Table table = make_table(columns, "results") self.run.log({"evaluation/eval_results": table}) if "groups" in self.results.keys(): table = make_table(["Groups"] + columns, "groups") self.run.log({"evaluation/group_eval_results": table}) def _log_results_as_artifact(self) -> None: """Log results as JSON artifact to W&B.""" dumped = json.dumps(self.results, indent=2, default=_handle_non_serializable, ensure_ascii=False) artifact = wandb.Artifact("results", type="eval_results") with artifact.new_file("results.json", mode="w", encoding="utf-8") as f: f.write(dumped) self.run.log_artifact(artifact) def log_eval_result(self) -> None: """Log evaluation results to W&B.""" # Log configs to wandb configs = self._get_config() self.run.config.update(configs, allow_val_change=True) wandb_summary, self.wandb_results = self._sanitize_results_dict() # update wandb.run.summary with items that were removed self.run.summary.update(wandb_summary) # Log the evaluation metrics to wandb self.run.log(self.wandb_results) # Log the evaluation metrics as W&B Table self._log_results_as_table() # Log the results dict as json to W&B Artifacts self._log_results_as_artifact() def _generate_dataset(self, data: List[Dict[str, Any]], config: Dict[str, Any]) -> pd.DataFrame: """Generate a dataset from evaluation data. Args: data (List[Dict[str, Any]]): The data to generate a dataset for. config (Dict[str, Any]): The configuration of the task. Returns: pd.DataFrame: A dataframe that is ready to be uploaded to W&B. """ ids = [x["doc_id"] for x in data] labels = [x["target"] for x in data] instance = [""] * len(ids) resps = [""] * len(ids) filtered_resps = [""] * len(ids) model_outputs = {} metrics_list = config["metric_list"] metrics = {} for metric in metrics_list: metric = metric.get("metric") if metric in ["word_perplexity", "byte_perplexity", "bits_per_byte"]: metrics[f"{metric}_loglikelihood"] = [x[metric][0] for x in data] if metric in ["byte_perplexity", "bits_per_byte"]: metrics[f"{metric}_bytes"] = [x[metric][1] for x in data] else: metrics[f"{metric}_words"] = [x[metric][1] for x in data] else: metrics[metric] = [x[metric] for x in data] if config["output_type"] == "loglikelihood": instance = [x["arguments"][0][0] for x in data] labels = [x["arguments"][0][1] for x in data] resps = [f'log probability of continuation is {x["resps"][0][0][0]} ' + "\n\n" + "continuation will {} generated with greedy sampling".format("not be" if not x["resps"][0][0][1] else "be") for x in data] filtered_resps = [f'log probability of continuation is {x["filtered_resps"][0][0]} ' + "\n\n" + "continuation will {} generated with greedy sampling".format("not be" if not x["filtered_resps"][0][1] else "be") for x in data] elif config["output_type"] == "multiple_choice": instance = [x["arguments"][0][0] for x in data] choices = ["\n".join([f"{idx}. {y[1]}" for idx, y in enumerate(x["arguments"])]) for x in data] resps = [np.argmax([n[0][0] for n in x["resps"]]) for x in data] filtered_resps = [np.argmax([n[0] for n in x["filtered_resps"]]) for x in data] elif config["output_type"] == "generate_until": instance = [x["arguments"][0][0] for x in data] resps = [x["resps"][0][0] for x in data] filtered_resps = [x["filtered_resps"][0] for x in data] model_outputs["raw_predictions"] = resps model_outputs["filtered_predictions"] = filtered_resps df_data = { "id": ids, "data": instance, } if config["output_type"] == "multiple_choice": df_data["choices"] = choices tmp_data = { "input_len": [len(x) for x in instance], "labels": labels, "output_type": config["output_type"], } df_data.update(tmp_data) df_data.update(model_outputs) df_data.update(metrics) return pd.DataFrame(df_data) def _log_samples_as_artifact(self, data: List[Dict[str, Any]], task_name: str) -> None: # log the samples as an artifact dumped = json.dumps( data, indent=2, default=_handle_non_serializable, ensure_ascii=False, ) artifact = wandb.Artifact(f"{task_name}", type="samples_by_task") with artifact.new_file(f"{task_name}_eval_samples.json", mode="w", encoding="utf-8") as f: f.write(dumped) self.run.log_artifact(artifact) # artifact.wait() def log_eval_samples(self, samples: Dict[str, List[Dict[str, Any]]]) -> None: """Log evaluation samples to W&B. Args: samples (Dict[str, List[Dict[str, Any]]]): Evaluation samples for each task. """ task_names: List[str] = [x for x in self.task_names if x not in self.group_names] ungrouped_tasks = [] tasks_by_groups = {} for task_name in task_names: group_names = self.task_configs[task_name].get("group", None) if group_names: if isinstance(group_names, str): group_names = [group_names] for group_name in group_names: if not tasks_by_groups.get(group_name): tasks_by_groups[group_name] = [task_name] else: tasks_by_groups[group_name].append(task_name) else: ungrouped_tasks.append(task_name) for task_name in ungrouped_tasks: eval_preds = samples[task_name] # log the samples as a W&B Table df = self._generate_dataset(eval_preds, self.task_configs.get(task_name)) self.run.log({f"{task_name}_eval_results": df}) # log the samples as a json file as W&B Artifact self._log_samples_as_artifact(eval_preds, task_name) for group, grouped_tasks in tasks_by_groups.items(): grouped_df = pd.DataFrame() for task_name in grouped_tasks: eval_preds = samples[task_name] df = self._generate_dataset(eval_preds, self.task_configs.get(task_name)) df["group"] = group df["task"] = task_name grouped_df = pd.concat([grouped_df, df], ignore_index=True) # log the samples as a json file as W&B Artifact self._log_samples_as_artifact(eval_preds, task_name) self.run.log({f"{group}_eval_results": grouped_df})