lmms_eval/models/fuyu.py (198 lines of code) (raw):

import warnings warnings.simplefilter("ignore", category=DeprecationWarning) warnings.filterwarnings("ignore") from accelerate import Accelerator, DistributedType from transformers import FuyuForCausalLM, AutoTokenizer, FuyuImageProcessor, FuyuProcessor from lmms_eval.api.model import lmms from lmms_eval.api.registry import register_model import torch from PIL import Image from typing import List, Optional, Union, Tuple from lmms_eval import utils from lmms_eval.api.instance import Instance from tqdm import tqdm from accelerate import Accelerator, DistributedType from accelerate.state import AcceleratorState import logging import logging eval_logger = logging.getLogger("lmms-eval") eval_logger = logging.getLogger("lmms-eval") @register_model("fuyu") class Fuyu(lmms): """ Fuyu Model """ def __init__( self, pretrained: str = "adept/fuyu-8b", device: Optional[str] = "cuda", max_new_tokens: int = 256, batch_size: Optional[Union[int, str]] = 1, **kwargs, ) -> None: super().__init__() # Do not use kwargs for now assert kwargs == {}, f"Unexpected kwargs: {kwargs}" accelerator = Accelerator() if accelerator.num_processes > 1: self._device = torch.device(f"cuda:{accelerator.local_process_index}") else: self._device = device self._model = FuyuForCausalLM.from_pretrained(pretrained, torch_dtype=torch.bfloat16, device_map=self.device) self.model.eval() self.model.tie_weights() self._tokenizer = AutoTokenizer.from_pretrained(pretrained) self._config = self.model.config self.image_processor = FuyuImageProcessor() self.processor = FuyuProcessor(image_processor=self.image_processor, tokenizer=self.tokenizer) self.max_new_tokens = max_new_tokens self.batch_size_per_gpu = int(batch_size) accelerator = Accelerator() if accelerator.num_processes > 1: assert accelerator.distributed_type in [DistributedType.FSDP, DistributedType.MULTI_GPU, DistributedType.DEEPSPEED], "Unsupported distributed type provided. Only DDP and FSDP are supported." # If you want to use DistributedType.DEEPSPEED, you have to run accelerate config before using the model # Also, you have to select zero stage 0 (equivalent to DDP) in order to make the prepare model works # I tried to set different parameters in the kwargs to let default zero 2 stage works, but it didn't work. if accelerator.distributed_type == DistributedType.DEEPSPEED: kwargs = { "train_micro_batch_size_per_gpu": self.batch_size_per_gpu, "train_batch_size": self.batch_size_per_gpu * accelerator.num_processes, } AcceleratorState().deepspeed_plugin.deepspeed_config_process(must_match=True, **kwargs) eval_logger.info("Detected that you are using DistributedType.DEEPSPEED. Make sure you run `accelerate config` and set zero stage to 0") if accelerator.distributed_type == DistributedType.FSDP or accelerator.distributed_type == DistributedType.DEEPSPEED: self._model = accelerator.prepare(self.model) else: self._model = accelerator.prepare_model(self.model, evaluation_mode=True) self.accelerator = accelerator if self.accelerator.is_local_main_process: eval_logger.info(f"Using {accelerator.num_processes} devices with data parallelism") self._rank = self.accelerator.local_process_index self._world_size = self.accelerator.num_processes if accelerator.num_processes > 1: assert accelerator.distributed_type in [ DistributedType.FSDP, DistributedType.MULTI_GPU, ], "Unsupported distributed type provided. Only DDP and FSDP are supported." if accelerator.distributed_type == DistributedType.FSDP: self._model = accelerator.prepare(self.model) else: self._model = accelerator.prepare_model(self.model, evaluation_mode=True) self.accelerator = accelerator if self.accelerator.is_local_main_process: eval_logger.info(f"Using {accelerator.num_processes} devices with data parallelism") self._rank = self.accelerator.local_process_index self._world_size = self.accelerator.num_processes else: self.model.to(self._device) self._rank = 0 self._word_size = 1 @property def config(self): # return the associated transformers.AutoConfig for the given pretrained model. return self._config @property def tokenizer(self): return self._tokenizer @property def model(self): # returns the model, unwrapping it if using Accelerate if hasattr(self, "accelerator"): return self.accelerator.unwrap_model(self._model) else: return self._model @property def eot_token_id(self): # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence* return self.tokenizer.eos_token_id @property def max_length(self): # Assuming max_length is the sum of max context tokens and max new tokens return self.tokenizer.model_max_length @property def batch_size(self): return self.batch_size_per_gpu @property def device(self): return self._device @property def rank(self): return self._rank @property def world_size(self): return self._world_size def flatten(self, input, only_get_first=False): new_list = [] for i in input: for j in i: new_list.append(j) if only_get_first: break return new_list def generate_until(self, requests: List[Instance]) -> List[str]: res = [] def _collate(x): # the negative sign on len(toks) sorts descending - this has a few advantages: # - time estimates will always be over not underestimates, which is more useful for planning # - to know the size of a batch when going through the list, you know the first one is always the batch # padded context length. this is useful to simplify the batching logic and more importantly to make # automatic adaptive batches much much easier to implement # - any OOMs will happen right away rather than near the end toks = self.tok_encode(x[0]) return -len(toks), x[0] re_ords = utils.Collator([reg.args for reg in requests], _collate, grouping=True) chunks = re_ords.get_batched(n=self.batch_size, batch_fn=None) num_iters = len(requests) // self.batch_size if len(requests) % self.batch_size == 0 else len(requests) // self.batch_size + 1 pbar = tqdm(total=num_iters, disable=(self.rank != 0), desc="Model Responding") for chunk in chunks: contexts, all_gen_kwargs, doc_to_visual, doc_id, task, split = zip(*chunk) task = task[0] split = split[0] visuals = [doc_to_visual[0](self.task_dict[task][split][ids]) for ids in doc_id] visuals = self.flatten(visuals, only_get_first=True) gen_kwargs = all_gen_kwargs[0] # if isinstance(visuals[0], list): # visuals = [visuals[idx][0] for idx in range(len(visuals))] # get the first image in multi-image scenarios. # assert len(contexts) == self.batch_size_per_gpu, f"Expected contexts batch size {self.batch_size_per_gpu}, got {len(contexts)}" # assert len(visuals) == self.batch_size_per_gpu, f"Expected visuals batch size {self.batch_size_per_gpu}, got {len(visuals)}" formatted_contexts = [f"{context}\n" for context in contexts] model_inputs = self.processor(text=formatted_contexts, images=visuals, device=self.device) for k, v in model_inputs.items(): model_inputs[k] = v.to(self.device, non_blocking=True) if isinstance(v, torch.Tensor) else [vv.to(self.device, non_blocking=True) for vv in v] for index in range(len(model_inputs["image_patches"])): model_inputs["image_patches"][index] = model_inputs["image_patches"][index].to(dtype=next(self.model.parameters()).dtype) # preconfigure gen_kwargs with defaults gen_kwargs["image_sizes"] = [visuals[idx].size for idx in range(len(visuals))] if "max_new_tokens" not in gen_kwargs: gen_kwargs["max_new_tokens"] = 256 if "temperature" not in gen_kwargs: gen_kwargs["temperature"] = 0 if "top_p" not in gen_kwargs: gen_kwargs["top_p"] = None if "num_beams" not in gen_kwargs: gen_kwargs["num_beams"] = 1 # generation_output = self.model.generate( # **model_inputs, temperature=gen_kwargs["temperature"], max_new_tokens=gen_kwargs["max_new_tokens"], top_p=gen_kwargs["top_p"], num_beams=gen_kwargs["num_beams"], pad_token_id=self.tokenizer.eos_token_id # ) generation_output = self.model.generate(**model_inputs, max_new_tokens=gen_kwargs["max_new_tokens"]) generation_texts = self.processor.batch_decode(generation_output, skip_special_tokens=True) response = [gen_text.split("\x04")[1].strip(" ").strip("\n") for gen_text in generation_texts] res.extend(response) pbar.update(1) pbar.close() return res def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]: # TODO res = [] pbar = tqdm(total=len(requests), disable=(self.rank != 0), desc="Model Responding") for contexts, doc_to_target, doc_to_visual, doc_id, task, split in [reg.args for reg in requests]: # encode, pad, and truncate contexts for this batch if type(doc_to_target) == str: continuation = doc_to_target else: continuation = doc_to_target(self.task_dict[task][split][doc_id]) visuals = [doc_to_visual(self.task_dict[task][split][doc_id])] visuals = self.flatten(visuals) formatted_contexts = [f"{contexts}\n"] formatted_continuation = [f"{contexts}\n{continuation}"] model_inputs = self.processor(text=formatted_continuation, images=visuals, device=self.device) for k, v in model_inputs.items(): model_inputs[k] = v.to(self.device, non_blocking=True) if isinstance(v, torch.Tensor) else [vv.to(self.device, non_blocking=True) for vv in v] for index in range(len(model_inputs["image_patches"])): model_inputs["image_patches"][index] = model_inputs["image_patches"][index].to(dtype=next(self.model.parameters()).dtype) labels = model_inputs["input_ids"].clone() contxt_id = self.processor(text=formatted_contexts, return_tensors="pt")["input_ids"] labels[: len(contxt_id)] = -100 with torch.inference_mode(): outputs = self.model(**model_inputs, labels=labels) loss = outputs["loss"] # loss = torch.exp(loss) logits = outputs["logits"] greedy_tokens = logits.argmax(dim=-1) cont_toks = model_inputs["input_ids"][:, contxt_id.shape[1] :] # [1, seq] greedy_tokens = greedy_tokens[:, contxt_id.shape[1] : model_inputs["input_ids"].shape[1]] # [1, seq] max_equal = (greedy_tokens == cont_toks).all() res.append((float(loss.item()), bool(max_equal))) pbar.update(1) pbar.close() return res def tok_encode(self, string: str, left_truncate_len=None, add_special_tokens=None) -> List[int]: """ """ add_special_tokens = False if add_special_tokens is None else add_special_tokens encoding = self.tokenizer.encode(string, add_special_tokens=add_special_tokens) # left-truncate the encoded context to be at most `left_truncate_len` tokens long if left_truncate_len: encoding = encoding[-left_truncate_len:] return encoding def tok_decode(self, tokens): return self.tokenizer.decode(tokens)