lmms_eval/models/minicpm_v.py (165 lines of code) (raw):

import torch import logging from tqdm import tqdm from lmms_eval import utils from lmms_eval.api.instance import Instance from lmms_eval.api.model import lmms from lmms_eval.api.registry import register_model from accelerate import Accelerator, DistributedType from accelerate.state import AcceleratorState from typing import List, Optional, Union, Tuple from transformers import AutoModel, AutoTokenizer import warnings warnings.filterwarnings("ignore") eval_logger = logging.getLogger("lmms-eval") @register_model("minicpm_v") class MiniCPM_V(lmms): """ MiniCPM_V Model """ def __init__( self, pretrained: str = "openbmb/MiniCPM-V", device: Optional[str] = "cuda", dtype: Optional[Union[str, torch.dtype]] = torch.bfloat16, batch_size: Optional[Union[int, str]] = 1, trust_remote_code: Optional[bool] = True, **kwargs, ) -> None: super().__init__() # Do not use kwargs for now assert kwargs == {}, f"Unexpected kwargs: {kwargs}" accelerator = Accelerator() if accelerator.num_processes > 1: self._device = torch.device(f"cuda:{accelerator.local_process_index}") else: self._device = device self._model = AutoModel.from_pretrained(pretrained, trust_remote_code=trust_remote_code, torch_dtype=dtype, device_map=self._device).to(dtype) self._tokenizer = AutoTokenizer.from_pretrained(pretrained, trust_remote_code=trust_remote_code) self._config = self._model.config self.model.eval() self.model.tie_weights() self.batch_size_per_gpu = int(batch_size) if accelerator.num_processes > 1: assert accelerator.distributed_type in [DistributedType.FSDP, DistributedType.MULTI_GPU, DistributedType.DEEPSPEED], "Unsupported distributed type provided. Only DDP and FSDP are supported." # If you want to use DistributedType.DEEPSPEED, you have to run accelerate config before using the model # Also, you have to select zero stage 0 (equivalent to DDP) in order to make the prepare model works # I tried to set different parameters in the kwargs to let default zero 2 stage works, but it didn't work. if accelerator.distributed_type == DistributedType.DEEPSPEED: kwargs = { "train_micro_batch_size_per_gpu": self.batch_size_per_gpu, "train_batch_size": self.batch_size_per_gpu * accelerator.num_processes, } AcceleratorState().deepspeed_plugin.deepspeed_config_process(must_match=True, **kwargs) eval_logger.info("Detected that you are using DistributedType.DEEPSPEED. Make sure you run `accelerate config` and set zero stage to 0") if accelerator.distributed_type == DistributedType.FSDP or accelerator.distributed_type == DistributedType.DEEPSPEED: self._model = accelerator.prepare(self.model) else: self._model = accelerator.prepare_model(self.model, evaluation_mode=True) self.accelerator = accelerator if self.accelerator.is_local_main_process: eval_logger.info(f"Using {accelerator.num_processes} devices with data parallelism") self._rank = self.accelerator.local_process_index self._world_size = self.accelerator.num_processes else: self.model.to(self._device) self._rank = 0 self._word_size = 1 @property def config(self): # return the associated transformers.AutoConfig for the given pretrained model. return self._config @property def tokenizer(self): return self._tokenizer @property def model(self): # returns the model, unwrapping it if using Accelerate if hasattr(self, "accelerator"): return self.accelerator.unwrap_model(self._model) else: return self._model @property def eot_token_id(self): # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence* return self.tokenizer.eos_token_id @property def max_length(self): return self._max_length @property def batch_size(self): return self.batch_size_per_gpu @property def device(self): return self._device @property def rank(self): return self._rank @property def world_size(self): return self._world_size def tok_encode(self, string: str, left_truncate_len=None, add_special_tokens=None) -> List[int]: """ """ add_special_tokens = False if add_special_tokens is None else add_special_tokens encoding = self.tokenizer.encode(string, add_special_tokens=add_special_tokens) # left-truncate the encoded context to be at most `left_truncate_len` tokens long if left_truncate_len: encoding = encoding[-left_truncate_len:] return encoding def tok_decode(self, tokens): return self.tokenizer.decode(tokens) def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]: # TODO assert False, "We have not implemented this function for MiniCPM_V yet" def flatten(self, input): new_list = [] for i in input: for j in i: new_list.append(j) return new_list def generate_until(self, requests: List[Instance]) -> List[str]: res = [] def _collate(x): # the negative sign on len(toks) sorts descending - this has a few advantages: # - time estimates will always be over not underestimates, which is more useful for planning # - to know the size of a batch when going through the list, you know the first one is always the batch # padded context length. this is useful to simplify the batching logic and more importantly to make # automatic adaptive batches much much easier to implement # - any OOMs will happen right away rather than near the end toks = self.tok_encode(x[0]) return -len(toks), x[0] # we group requests by their generation_kwargs, # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling # in the same batch. re_ords = utils.Collator([reg.args for reg in requests], _collate, grouping=True) chunks = re_ords.get_batched(n=self.batch_size, batch_fn=None) num_iters = len(requests) // self.batch_size if len(requests) % self.batch_size == 0 else len(requests) // self.batch_size + 1 pbar = tqdm(total=num_iters, disable=(self.rank != 0), desc="Model Responding") for chunk in chunks: contexts, all_gen_kwargs, doc_to_visual, doc_id, task, split = zip(*chunk) task = task[0] split = split[0] visuals = [doc_to_visual[0](self.task_dict[task][split][ids]) for ids in doc_id] visuals = self.flatten(visuals) # we assume all gen kwargs in the batch are the same # this is safe to assume because the `grouper` object ensures it. gen_kwargs = all_gen_kwargs[0] # Set default values for until and max_new_tokens until = [self.tok_decode(self.eot_token_id)] # Update values from gen_kwargs if present if "until" in gen_kwargs: until = gen_kwargs.pop("until") if isinstance(until, str): until = [until] elif not isinstance(until, list): raise ValueError(f"Expected `gen_kwargs['until']` to be of type Union[str,list] but got {type(until)}") assert self.batch_size_per_gpu == 1, "Do not support batch_size_per_gpu > 1 for now" assert len(visuals) == 1, "MiniCPM_V interface does not support bn_image > 1 for now" context = contexts[0] if "<image>" in context: # minicpm does not expect the <image> tag context = context.replace("<image>", "") msgs = [{"role": "user", "content": context}] gen_kwargs["image_sizes"] = [visuals[idx].size for idx in range(len(visuals))] if "max_new_tokens" not in gen_kwargs: gen_kwargs["max_new_tokens"] = 1024 if "temperature" not in gen_kwargs: gen_kwargs["temperature"] = 0 if "top_p" not in gen_kwargs: gen_kwargs["top_p"] = None if "num_beams" not in gen_kwargs: gen_kwargs["num_beams"] = 1 try: # ominicpm does not give much information on how they do eval so I just use the chat format. response, context, _ = self.model.chat( image=visuals[0], msgs=msgs, context=None, tokenizer=self.tokenizer, sampling=True if gen_kwargs["temperature"] > 0 else False, temperature=gen_kwargs["temperature"], top_p=gen_kwargs["top_p"], num_beams=gen_kwargs["num_beams"], max_new_tokens=gen_kwargs["max_new_tokens"], ) except Exception as e: eval_logger.error(f"Error {e} in generating") cont = "" res.append(response) self.cache_hook.add_partial("generate_until", (context, gen_kwargs), response) pbar.update(1) # reorder this group of results back to original unsorted form res = re_ords.get_original(res) pbar.close() return res