lmms_eval/tasks/cmmmu/utils.py (304 lines of code) (raw):

from collections import defaultdict import re import random import os import json import logging from collections import Counter from lmms_eval.tasks._task_utils.file_utils import generate_submission_file eval_logger = logging.getLogger("lmms-eval") PROMPT = { "task_instructions": [ "请回答以下多项选择题,并选出正确选项。这些题目可能包括单选和多选题型。如果所提供的信息不足以确定一个明确的答案,那么请根据可用的数据和你的判断来选择最可能正确的选项。", "请回答以下判断题,并根据题目描述和所给的信息来判断问题中陈述的对错。如果信息不完整或不足以作出绝对判断,请运用你的逻辑推理和现有信息来做出最可能的判断。", "请回答以下填空题,并根据题目的要求和所提供的信息来给出最恰当的答案。如果信息不足以确切回答,那么请依据现有的数据和你的推理能力来填写最合理的答案。", ], "multi_choice_example_format": ["问题:{}\n选项:\n{}\n正确答案:\n"], "T/F_example_format": ["问题:{}\n正确答案:\n"], "short_ans_example_format": ["问题:{}\n正确答案:\n"], } def construct_prompt(sample): question = sample["question"] task_instructions = PROMPT["task_instructions"] if sample["type"] == "选择": formatted_options = "" start_chr = "A" for i in range(1, 5): formatted_options += f"({start_chr}) {sample[f'option{i}']}\n" start_chr = chr(ord(start_chr) + 1) current_example_template = PROMPT["multi_choice_example_format"][0] current_example = current_example_template.format(question, formatted_options) final_input_prompt = task_instructions[0] + "\n\n" + current_example elif sample["type"] == "判断": current_example_template = PROMPT["T/F_example_format"][0] current_example = current_example_template.format(question) final_input_prompt = task_instructions[1] + "\n\n" + current_example else: # For fill in the blanks questions. current_example_template = PROMPT["short_ans_example_format"][0] current_example = current_example_template.format(question) final_input_prompt = task_instructions[2] + "\n\n" + current_example for i in range(1, 6): final_input_prompt = final_input_prompt.replace(f'<img="{sample[f"image_{i}_filename"]}">', f"<图片 {i}>") return final_input_prompt def cmmmu_doc_to_text(doc): return construct_prompt(doc) def cmmmu_doc_to_visual(doc): prompt = construct_prompt(doc) image_tokens = re.findall(r"<图片 \d+>", prompt) # Remove <> and swap space as _ image_tokens = [image_token.strip("<>").replace(" ", "_").replace("图片", "image") for image_token in image_tokens] visual = [doc[image_token].convert("RGB") for image_token in image_tokens] return visual def cmmmu_process_results(doc, results): pred = results[0] if doc["type"] == "选择": index2ans, all_choices = get_multi_choice_info([doc[f"option{i}"] for i in range(1, 5)]) parsed_pred = get_multi_choice_prediction(pred, all_choices, index2ans) elif doc["type"] == "判断": parsed_pred = get_TF_prediction(pred) else: parsed_pred = get_fill_blank_prediction(pred, doc["answer"]) return {"cmmmu_acc": {"id": doc["id"], "subdomain": doc["subcategory"], "question_type": doc["type"], "answer": doc["answer"], "parsed_pred": parsed_pred}} def cmmmu_aggregate_results(results): evaluation_result = {} subset_to_eval_samples = defaultdict(list) for result in results: subset_to_eval_samples[result["subdomain"]].append(result) for subset, sub_eval_samples in subset_to_eval_samples.items(): metric_dict = eval_cmmmu(sub_eval_samples) evaluation_result[subset] = metric_dict printable_results = {} for domain, in_domain_cats in DOMAIN_CAT2SUB_CAT.items(): in_domain_cat_results = {} for cat_name in in_domain_cats: if cat_name in evaluation_result.keys(): in_domain_cat_results[cat_name] = evaluation_result[cat_name] else: pass in_domain_ins_acc = calculate_ins_level_acc(in_domain_cat_results) in_domain_data_num = sum([cat_results["entries_num"] for cat_results in in_domain_cat_results.values()]) printable_results["Overall-" + domain] = { "num": int(in_domain_data_num), "acc": round(in_domain_ins_acc, 3), } # add sub category for cat_name, cat_results in in_domain_cat_results.items(): printable_results[cat_name] = { "num": int(cat_results["entries_num"]), "acc": round(cat_results["acc"], 3), } all_ins_acc = calculate_ins_level_acc(evaluation_result) printable_results["Overall"] = { "num": sum([cat_results["entries_num"] for cat_results in evaluation_result.values()]), "acc": round(all_ins_acc, 3), } print(printable_results) return printable_results["Overall"]["acc"] def cmmmu_process_test_results_for_submission(doc, results): response = results[0] return {"submission": {"id": doc["id"], "type": doc["type"], "response": response}} def cmmmu_test_aggregate_results_for_submission(results, args): file = generate_submission_file("cmmmu_test_for_submission.jsonl", args) with open(file, "w", encoding="utf8") as f: for result in results: json.dump(result, f, ensure_ascii=False) f.write("\n") eval_logger.info(f"Submission file saved to {file}") ################## # Helper functions ################## DOMAIN_CAT2SUB_CAT = { "艺术与设计": ["艺术", "艺术理论", "设计", "音乐"], "商业": ["会计", "经济", "金融", "管理", "营销"], "科学": ["生物", "化学", "地理", "数学", "物理"], "健康与医学": ["基础医学", "临床医学", "诊断学与实验室医学", "制药", "公共卫生"], "人文社会科学": ["历史", "文献学", "社会学", "心理学"], "技术与工程": ["农业", "建筑学", "计算机科学", "电子学", "能源和电力", "材料", "机械工程"], } def eval_cmmmu(entries): correct_cnt = 0 for entry in entries: parsed_pred = entry.get("parsed_pred", "") correct = False if entry.get("question_type") == "选择": if parsed_pred == entry["answer"]: correct_cnt += 1 correct = True elif entry.get("question_type") == "填空": norm_answers = normalize_str(entry["answer"], entry["answer"]) for pred in parsed_pred: # already normalized if isinstance(pred, str): # if it's a string, then find if ans in the pred_i for norm_ans in norm_answers: # only see if the string answer in the string pred # print(norm_ans, pred) if isinstance(norm_ans, str) and norm_ans in pred: if not correct: correct_cnt += 1 correct = True break else: # it's a number if pred in norm_answers: if not correct: correct_cnt += 1 correct = True break else: positive_keywords = ["正确", "对", "准确", "肯定", "对的"] negative_keywords = ["不对", "错误", "不正确", "不准确", "不合适", "否定", "错的", "错"] ambiguous_keywords = ["对错", "是否正确", "否正确", "或者", "是否", "正确性", "对不"] def judge_similarity(pred_list, positive_keywords, negative_keywords): positive_count = 0 negative_count = 0 for pred in pred_list: if any(pos_word in pred for pos_word in positive_keywords): positive_count += 1 elif any(neg_word in pred for neg_word in negative_keywords): negative_count += 1 if positive_count > negative_count: return "对" elif negative_count > positive_count: return "错" else: return random.choice(["对", "错"]) answer = entry["answer"] parsed_pred = [word for word in parsed_pred if not any(ambiguous in word for ambiguous in ambiguous_keywords)] result = judge_similarity(parsed_pred, positive_keywords, negative_keywords) if result == answer: correct_cnt += 1 correct = True if correct: entry["judge"] = "正确" else: entry["judge"] = "错误" if len(entries) == 0: print("entries_num == 0, please check your file") results_count = {"correct_num": 0, "entries_num": 0, "acc": 0} else: results_count = {"correct_num": correct_cnt, "entries_num": len(entries), "acc": correct_cnt / len(entries)} return results_count def get_multi_choice_prediction(response, all_choices, index2ans): for char in [",", ".", "!", "?", ";", ":", "'"]: response = response.strip(char) response = " " + response + " " # add space to avoid partial match candidates = [] for choice in all_choices: # (A) (B) (C) (D) # Add the choice to candidates each time it appears in the response candidates.extend([choice for _ in range(response.count(f"({choice})"))]) if len(candidates) == 0: for choice in all_choices: # A B C D # Similarly, add the choice for each occurrence candidates.extend([choice for _ in range(response.count(f"{choice}"))]) if len(candidates) == 0 and len(response.split()) >= 1: for index, ans in index2ans.items(): # Add index for each occurrence of ans in response candidates.extend([index for _ in range(response.count(ans))]) # if all above doesn't get candidates, check if the content is larger than 5 tokens and try to parse the example if len(candidates) == 0 and len(response.split()) >= 1: for index, ans in index2ans.items(): if ans in response: candidates.append(index) index_ans = False # it's content ans. if len(candidates) == 0: # still not get answer, randomly choose one. return random.choice(all_choices) # return '' else: # Count the occurrence of each candidate candidate_counts = Counter(candidates) # Select the most frequent candidates max_count = max(candidate_counts.values()) most_frequent_candidates = [c for c in all_choices if candidate_counts.get(c, 0) == max_count] # Combine the most frequent candidates in ABCD order return "".join(most_frequent_candidates) def extract_numbers(string): # Pattern for numbers with Chinese commas pattern_commas = r"-?\d{1,3}(?:,\d{3})+" # Pattern for scientific notation pattern_scientific = r"-?\d+(?:\.\d+)?[eE][+-]?\d+" # Pattern for simple numbers without Chinese commas pattern_simple = r"-?(?:\d+\.\d+|\.\d+|\d+)(?![eE][+-]?\d+)(?!,\d)" # Extract numbers with Chinese commas numbers_with_commas = re.findall(pattern_commas, string) # Extract numbers in scientific notation numbers_scientific = re.findall(pattern_scientific, string) # Extract simple numbers without Chinese commas numbers_simple = re.findall(pattern_simple, string) # Combine all extracted numbers all_numbers = numbers_with_commas + numbers_scientific + numbers_simple return all_numbers def check_is_number(string): try: float(string.replace(",", "")) return True except ValueError: # check if there's comma inside return False def count_letters(string): return sum(c.isalpha() and "a" <= c <= "z" or "A" <= c <= "Z" for c in string) def normalize_str(string, answer): # check if characters in the string # if number, numerize it. if string == None: return [string] string = string.strip() is_number = check_is_number(string) if is_number: string = string.replace(",", "") string = float(string) # leave 2 decimal string = round(string, 2) return [string] else: # it's likely to be a string if len(string) > len(answer) + 20 or count_letters(string) > count_letters(answer) + 2: return [] return [string] def get_fill_blank_prediction(response, answer): """get the prediction from the generated response, return a list of predicted strings or numbers""" def get_key_subresponses(response): key_responses = [] response = response.strip("。").strip() sub_responses = re.split(r"。|\n", response) indicators_of_keys = ["是", "为", "所以", "等于", "方案", "选择", "正确答案", "因此", "最后", "答案", "结果"] key_responses = [] for index, resp in enumerate(sub_responses): # if last one, accept it's an equation (the entire response can be just one sentence with equation) if index == len(sub_responses) - 1: indicators_of_keys.extend(["="]) shortest_key_response = None # the shortest response that may contain the answer (tail part of the response) for indicator in indicators_of_keys: if indicator in resp: if not shortest_key_response: shortest_key_response = resp.split(indicator)[-1].strip() else: if len(resp.split(indicator)[-1].strip()) < len(shortest_key_response): shortest_key_response = resp.split(indicator)[-1].strip() if shortest_key_response: # and it's not trivial if shortest_key_response.strip() not in [":", ",", ".", "!", "?", ";", ":", "'"]: key_responses.append(shortest_key_response) if len(key_responses) == 0: # did not found any return [response] return key_responses key_responses = get_key_subresponses(response) pred_list = key_responses.copy() # keep the original string response for resp in key_responses: pred_list.extend(extract_numbers(resp)) tmp_pred_list = [] for i in range(len(pred_list)): tmp_pred_list.extend(normalize_str(pred_list[i], answer)) pred_list = tmp_pred_list # remove duplicates pred_list = list(set(pred_list)) return pred_list def get_TF_prediction(response): """get the prediction from the generated response, return a list of predicted strings or numbers""" def get_key_subresponses(response): key_responses = [] response = response.strip("。").strip() sub_responses = re.split(r"。|\n", response) indicators_of_keys = ["是", "为", "所以", "判断", "陈述", "说法", "表达", "答案", "结果"] key_responses = [] for index, resp in enumerate(sub_responses): shortest_key_response = None # the shortest response that may contain the answer (tail part of the response) for indicator in indicators_of_keys: if indicator in resp: if not shortest_key_response: shortest_key_response = resp.split(indicator)[-1].strip() else: if len(resp.split(indicator)[-1].strip()) < len(shortest_key_response): shortest_key_response = resp.split(indicator)[-1].strip() if shortest_key_response: # and it's not trivial if shortest_key_response.strip() not in [":", ",", ".", "!", "?", ";", ":", "'"]: key_responses.append(shortest_key_response) if len(key_responses) == 0: # did not found any return [response] return key_responses key_responses = get_key_subresponses(response) pred_list = key_responses.copy() # keep the original string response # remove duplicates pred_list = list(set(pred_list)) return pred_list def get_multi_choice_info(options): start_chr = "A" all_choices = [] index2ans = {} for i, option in enumerate(options): index2ans[chr(ord(start_chr) + i)] = option all_choices.append(chr(ord(start_chr) + i)) return index2ans, all_choices def calculate_ins_level_acc(results): correct_sum = 0 entries_sum = 0 for cat_results in results.values(): correct_sum += cat_results["correct_num"] entries_sum += cat_results["entries_num"] if entries_sum == 0: return 0 return correct_sum / entries_sum