lmms_eval/tasks/coco_cap/utils.py (88 lines of code) (raw):

import os import json from pycocoevalcap.eval import COCOEvalCap, Bleu, Meteor, Rouge, Cider, Spice from pycocoevalcap.tokenizer.ptbtokenizer import PTBTokenizer from pycocotools.coco import COCO from lmms_eval.tasks._task_utils.file_utils import generate_submission_file import logging eval_logger = logging.getLogger("lmms-eval") dir_name = os.path.dirname(os.path.abspath(__file__)) COCO_METRICS = ["Bleu_4", "Bleu_3", "Bleu_2", "Bleu_1", "METEOR", "ROUGE_L", "CIDEr"] # , "SPICE"] def coco_doc_to_visual(doc): return [doc["image"].convert("RGB")] def coco_doc_to_text(doc): return f"Provide a one-sentence caption for the provided image." def coco_process_result(doc, result): """ Args: doc: a instance of the eval dataset results: [pred] Returns: a dictionary with key: metric name, value: metric value """ pred = result[0] if len(result) > 0 else "" question_id = doc["question_id"] # The question id in our dataset is the image file itself image_id = int(question_id.split("_")[-1].split(".")[0]) id = doc["id"] data_dict = {"answer": doc["answer"], "pred": pred, "image_id": image_id, "id": id} return {f"coco_{metric}": data_dict for metric in COCO_METRICS} def coco_aggregation_result(results, metric, args): scorers = [(Bleu(4), "Bleu_1"), (Bleu(4), "Bleu_2"), (Bleu(4), "Bleu_3"), (Bleu(4), "Bleu_4"), (Meteor(), "METEOR"), (Rouge(), "ROUGE_L"), (Cider(), "CIDEr"), (Spice(), "SPICE")] scorers_dict = {s[1]: s for s in scorers} stored_results = [] # In order to make the coco eval tools to successfully create index # We need at least two dict in the dataset # 'annotation' and 'images' # 'annotation' exactly reproduce the original annotation # 'images' however only need the image id which is contained in the file name dataset = {"annotations": [], "images": []} idx = 0 for result in results: stored_results.append({"image_id": int(result["image_id"]), "caption": result["pred"]}) for a in result["answer"]: dataset["annotations"].append({"image_id": int(result["image_id"]), "caption": a, "id": idx}) idx += 1 dataset["images"].append({"id": result["image_id"]}) coco = COCO() # Manually create index here coco.dataset = dataset coco.createIndex() coco_result = coco.loadRes(stored_results) coco_eval = COCOEvalCap(coco, coco_result) imgIds = coco_eval.params["image_id"] gts = {} res = {} for imgId in imgIds: gts[imgId] = coco_eval.coco.imgToAnns[imgId] res[imgId] = coco_eval.cocoRes.imgToAnns[imgId] eval_logger.info("tokenization...") tokenizer = PTBTokenizer() gts = tokenizer.tokenize(gts) res = tokenizer.tokenize(res) eval_logger.info(f"Computing {metric} scores...") score, scores = scorers_dict[metric][0].compute_score(gts, res) # When metric is one of the Bleu, score will be a list if type(score) == list: n = int(metric.split("_")[-1]) score = score[n - 1] path = generate_submission_file("coco_captions_val2014_alg_results.json", args) if not os.path.exists(path): eval_logger.info("Storing prediction that can be submitted to the server ...") with open(path, "w") as f: json.dump(stored_results, f, indent=4) return score def coco_bleu4(results, args): return coco_aggregation_result(results, "Bleu_4", args) def coco_bleu3(results, args): return coco_aggregation_result(results, "Bleu_3", args) def coco_bleu2(results, args): return coco_aggregation_result(results, "Bleu_2", args) def coco_bleu1(results, args): return coco_aggregation_result(results, "Bleu_1", args) def coco_meteor(results, args): return coco_aggregation_result(results, "METEOR", args) def coco_rougel(results, args): return coco_aggregation_result(results, "ROUGE_L", args) def coco_cider(results, args): return coco_aggregation_result(results, "CIDEr", args) def coco_spice(results, args): return coco_aggregation_result(results, "SPICE", args) def coco_test_process_result(doc, result): """ Args: doc: a instance of the eval dataset results: [pred] Returns: a dictionary with key: metric name (in this case coco_passthrough), value: metric value """ question_id = doc["question_id"] # The question id in our dataset is the image file itself image_id = int(question_id.split("_")[-1].split(".")[0]) return {"coco_passthrough": {"pred": result, "image_id": image_id}} def coco_test_aggregation_result(results, args): stored_results = [] for result in results: stored_results.append({"image_id": int(result["image_id"]), "caption": result["pred"]}) path = generate_submission_file("coco_captions_test2014_alg_results.json", args) eval_logger.info("Storing prediction that can be submitted to the server ...") with open(path, "w") as f: json.dump(stored_results, f, indent=4) eval_logger.info(f"Your test result has been stored in to {path}. Make sure you also have the val result stored to submit to the server on https://codalab.lisn.upsaclay.fr/competitions/7404#participate.")