lmms_eval/tasks/hallusion_bench/utils.py (237 lines of code) (raw):

import csv import json from tqdm import tqdm import numpy as np import os import time import openai import threading import requests import logging API_TYPE = os.getenv("API_TYPE", "openai") if API_TYPE == "openai": API_URL = os.getenv("OPENAI_API_URL", "https://api.openai.com/v1/chat/completions") API_KEY = os.getenv("OPENAI_API_KEY", "YOUR_API_KEY") headers = { "Authorization": f"Bearer {API_KEY}", "Content-Type": "application/json", } elif API_TYPE == "azure": API_URL = os.getenv("AZURE_ENDPOINT", "https://api.cognitive.microsoft.com/sts/v1.0/issueToken") API_KEY = os.getenv("AZURE_API_KEY", "YOUR_API_KEY") headers = { "api-key": API_KEY, "Content-Type": "application/json", } eval_logger = logging.getLogger("lmms-eval") def evaluate_by_chatgpt(data, output_entry, correctness_entry, gpt_model="gpt-4", load_json=False, save_json_path="./hallusion_output.json", retries=3): if load_json and os.path.exists(save_json_path): with open(save_json_path, "r") as f: output = json.load(f) else: output = [] for sample in tqdm(data[len(output) :], desc="Eval by GPT"): prompt = "Imagine you are an intelligent teacher. Thoroughly read the question, reference answer and the prediction answer to ensure a clear understanding of the information provided. Assess the correctness of the predictions. " prompt += 'If the prediction answer does not conflict with the reference answer, please generate “correct”. If the prediction answer conflict with the reference answer, please generate “incorrect”. If the prediction answer is unclear about the answer, please generate "unclear". \n\n Question:' prompt += sample["question"] prompt += "\nReference answer: " prompt += sample["gt_answer_details"] prompt += "\nPrediction answer:" prompt += sample[output_entry] prompt += "\nOutput:" # https://github.com/openai/openai-python/issues/322#issuecomment-1767841683 for attempt in range(retries): try: messages = [{"role": "user", "content": prompt}] payload = { "messages": messages, "max_tokens": 16, } # set model when using openai api_key. Azure api_key does not need model since the endpoint fixed the model. if API_TYPE == "openai": payload["model"] = gpt_model response = requests.post(API_URL, headers=headers, json=payload, timeout=30) response.raise_for_status() response = response.json() break except Exception as e: eval_logger.info(f"Attempt {attempt + 1} failed with error: {str(e)}") if attempt < retries - 1: # If we have retries left, sleep and then continue to next attempt time.sleep(5) else: # If this was the last attempt, log and return empty eval_logger.error(f"All {retries} attempts failed. Last error message: {str(e)}") try: output_text = response["choices"][0]["message"]["content"] except Exception as e: eval_logger.info(f"Get error {str(e)} when extracting response") output_text = "unclear" if "incorrect" in output_text.lower(): gpt_correctness = "0" elif "correct" in output_text.lower(): gpt_correctness = "1" else: gpt_correctness = "2" sample[correctness_entry] = gpt_correctness sample["gpt_answer"] = prompt + output_text output.append(sample) with open(save_json_path, "w") as f: json.dump(output, f, indent=4) return output def check_same_by_chatgpt(data, output_entry, gpt_model="gpt-4", load_json=False, save_json_path="./hallusion_output.json", retries=3): orig_response = {} for r in data: if str(r["figure_id"]) == "0": key = "_".join([r["category"], r["subcategory"], str(r["set_id"]), str(r["question_id"])]) orig_response[key] = r[output_entry] for sample in tqdm(data, desc="Check same by GPT"): if "same" not in sample.keys(): key = "_".join([sample["category"], sample["subcategory"], str(sample["set_id"]), str(sample["question_id"])]) response2 = orig_response[key] prompt = "Imagine you are an intelligent teacher. Thoroughly read the two responses to two different questions. Assess the consistency of the information provided within those two responses. " prompt += "You do not know the specific questions, but you can asssess the consistency among the two responses by checking for logical conflicts if both responses are correct. " prompt += 'If response1 does not conflict with response2, please generate “same”. Otherwise, generate "different". \n\n response1:' prompt += sample[output_entry] prompt += "\nresponse2: " prompt += response2 prompt += "\nOutput:" # https://github.com/openai/openai-python/issues/322#issuecomment-1767841683 for attempt in range(retries): try: headers = { "api-key": API_KEY, "Content-Type": "application/json", } messages = [{"role": "user", "content": prompt}] payload = { "model": gpt_model, "messages": messages, "max_tokens": 16, } response = requests.post(API_URL, headers=headers, json=payload) response.raise_for_status() response = response.json() break except Exception as e: eval_logger.info(f"Attempt {attempt + 1} failed with error: {str(e)}") if attempt < retries - 1: # If we have retries left, sleep and then continue to next attempt time.sleep(5) else: # If this was the last attempt, log and return empty eval_logger.error(f"All {retries} attempts failed. Last error message: {str(e)}") try: output_text = response["choices"][0]["message"]["content"] except Exception as e: eval_logger.info(f"Get error {str(e)} when extracting response") output_text = "different" gpt_same = "0" if "same" in output_text.lower(): gpt_same = "1" elif "different" in output_text.lower(): gpt_same = "0" sample["same"] = gpt_same with open(save_json_path, "w") as f: json.dump(data, f, indent=4) return data def assign_correctness(data_arr, correctness_entry): for r in data_arr: assert int(r[correctness_entry]) == 0 or int(r[correctness_entry]) == 1 or int(r[correctness_entry]) == 2 if r["category"] == "VS" and int(r["figure_id"]) == 0: # if there is no visual supplement and the model does not know, count it as correct r["correct"] = 1 if int(r[correctness_entry]) == 1 or int(r[correctness_entry]) == 2 else 0 else: r["correct"] = 1 if int(r[correctness_entry]) == 1 else 0 return data_arr def get_eval_fig(data): # per figure eval_fig_dict = dict() for r in data: if r["category"] == "VS" and str(r["figure_id"]) == "0": # no figure continue name = "_".join([r["category"], r["subcategory"], str(r["set_id"]), str(r["figure_id"])]) if name in eval_fig_dict: c, t = eval_fig_dict[name] eval_fig_dict[name] = (c + r["correct"], t + 1) else: eval_fig_dict[name] = (r["correct"], 1) eval_fig_stat = {} eval_fig_stat["note"] = "all accuracy per image (consistency test)" eval_fig_stat["total"] = len(eval_fig_dict.keys()) eval_fig_stat["correct"] = 0 eval_fig_stat["wrong"] = 0 eval_fig_stat["inconsistent"] = 0 eval_fig_stat["score"] = 0 for v in eval_fig_dict.values(): if v[0] == v[1]: eval_fig_stat["correct"] += 1 elif v[0] == 0: eval_fig_stat["wrong"] += 1 else: eval_fig_stat["inconsistent"] += 1 eval_fig_stat["score"] += v[0] / v[1] eval_fig_stat["score"] = eval_fig_stat["score"] / eval_fig_stat["total"] return eval_fig_stat def get_eval_all(data, model_correctness_entry): # per question eval_all_dict = dict() eval_all_stat = {} eval_all_stat["LH"] = 0 eval_all_stat["VI"] = 0 eval_all_stat["Mix"] = 0 for r in data: name = "_".join([r["category"], r["subcategory"], str(r["set_id"]), str(r["figure_id"]), str(r["question_id"])]) assert name not in eval_all_dict eval_all_dict[name] = r["correct"] if str(r["category"]) == "VD": # VD if str(r["figure_id"]) == "0": if str(r[model_correctness_entry]) == "0" or str(r[model_correctness_entry]) == "2": eval_all_stat["VI"] += 1 else: if str(r[model_correctness_entry]) == "0": eval_all_stat["Mix"] += 1 elif str(r[model_correctness_entry]) == "2": eval_all_stat["VI"] += 1 else: # VS if str(r["visual_input"]) == "0": # no visual if str(r[model_correctness_entry]) == "0": eval_all_stat["LH"] += 1 else: # original visual or modified visual (isual_input == 1 or 2) if str(r[model_correctness_entry]) == "0": eval_all_stat["Mix"] += 1 elif str(r[model_correctness_entry]) == "2": eval_all_stat["VI"] += 1 eval_all_stat["note"] = "all accuracy per question" eval_all_stat["total"] = len(eval_all_dict.keys()) eval_all_stat["correct"] = np.count_nonzero(list(eval_all_dict.values())) eval_all_stat["wrong"] = eval_all_stat["total"] - eval_all_stat["correct"] return eval_all_stat def get_eval_pair_all(data, model_correctness_entry): # per question pair orig_correctness = dict() counter = 0 lh_counter = 0 vi_counter = 0 both_counter = 0 for r in data: if str(r["figure_id"]) == "0": key = "_".join([r["category"], r["subcategory"], str(r["set_id"]), str(r["question_id"])]) orig_correctness[key] = r[model_correctness_entry] get_eval_pair_dict = dict() for r in data: name = "_".join([r["category"], r["subcategory"], str(r["set_id"]), str(r["question_id"])]) if name in get_eval_pair_dict: c, t = get_eval_pair_dict[name] get_eval_pair_dict[name] = (c + r["correct"], t + 1) else: get_eval_pair_dict[name] = (r["correct"], 1) counter += 1 eval_all_pair_stat = {} eval_all_pair_stat["note"] = "all accuracy per question pair" eval_all_pair_stat["total"] = len(get_eval_pair_dict.keys()) eval_all_pair_stat["total_q"] = counter eval_all_pair_stat["correct"] = 0 eval_all_pair_stat["wrong"] = 0 eval_all_pair_stat["LH"] = 0 eval_all_pair_stat["VI"] = 0 eval_all_pair_stat["Mix"] = 0 eval_all_pair_stat["LH_cg"] = lh_counter eval_all_pair_stat["VI_cg"] = vi_counter eval_all_pair_stat["Mix_cg"] = both_counter # for v in get_eval_pair_dict.values(): # if v[0] == v[1]: # eval_all_pair_stat["correct"] += 1 # else: # eval_all_pair_stat["wrong"] += 1 # for v in get_analysis_pair_dict.values(): # if v[0] > 0 and v[1] > 0: # eval_all_pair_stat["Mix"] += 1 # elif v[0] > 0: # eval_all_pair_stat["LH"] += 1 # elif v[1] > 0: # eval_all_pair_stat["VI"] += 1 for k in get_eval_pair_dict.keys(): v = get_eval_pair_dict[k] if v[0] == v[1]: eval_all_pair_stat["correct"] += 1 else: eval_all_pair_stat["wrong"] += 1 return eval_all_pair_stat