lmms_eval/tasks/llava-in-the-wild/utils.py (143 lines of code) (raw):

import json import logging import os import requests import numpy as np import openai from openai import OpenAI import time import yaml from pathlib import Path from copy import deepcopy eval_logger = logging.getLogger("lmms-eval") NUM_SECONDS_TO_SLEEP = 5 LLAVA_W_METRICS = ["gpt_eval_llava_conv", "gpt_eval_llava_detail", "gpt_eval_llava_complex"] rule_dict = json.load(open(os.path.join(os.path.dirname(os.path.abspath(__file__)), "rule.json"), "r")) with open(Path(__file__).parent / "llava-in-the-wild.yaml", "r") as f: raw_data = f.readlines() safe_data = [] for i, line in enumerate(raw_data): # remove function definition since yaml load cannot handle it if "!function" not in line: safe_data.append(line) config = yaml.safe_load("".join(safe_data)) GPT_EVAL_MODEL_NAME = config["metadata"]["gpt_eval_model_name"] API_TYPE = os.getenv("API_TYPE", "openai") if API_TYPE == "openai": API_URL = os.getenv("OPENAI_API_URL", "https://api.openai.com/v1/chat/completions") API_KEY = os.getenv("OPENAI_API_KEY", "YOUR_API_KEY") headers = { "Authorization": f"Bearer {API_KEY}", "Content-Type": "application/json", } elif API_TYPE == "azure": API_URL = os.getenv("AZURE_ENDPOINT", "https://api.cognitive.microsoft.com/sts/v1.0/issueToken") API_KEY = os.getenv("AZURE_API_KEY", "YOUR_API_KEY") headers = { "api-key": API_KEY, "Content-Type": "application/json", } def get_eval(content: str, max_tokens: int, retries: int = 5): global headers messages = [ { "role": "system", "content": "You are a helpful and precise assistant for checking the quality of the answer.", }, {"role": "user", "content": content}, ] payload = { "model": GPT_EVAL_MODEL_NAME, "messages": messages, "temperature": 0.2, "max_tokens": max_tokens, } for attempt in range(retries): try: response = requests.post(API_URL, headers=headers, json=payload, timeout=60) response.raise_for_status() response_data = response.json() content = response_data["choices"][0]["message"]["content"].strip() if content != "": return content, response_data["model"] break # If successful, break out of the loop except Exception as e: eval_logger.info(f"Attempt {attempt + 1} failed with error: {e}") if attempt < retries: # If we have retries left, sleep and then continue to next attempt time.sleep(NUM_SECONDS_TO_SLEEP) else: # If this was the last attempt, log and return empty eval_logger.error(f"All {retries} attempts failed. Last error message: {e}") return "", "" return "", "" def parse_score(review): try: score_pair = review.split("\n")[0] score_pair = score_pair.replace(",", " ") sp = score_pair.split(" ") if len(sp) == 2: return [float(sp[0]), float(sp[1])] else: eval_logger.debug(f"Can not split: {review}. Returning [-1, -1]") return [-1, -1] except Exception as e: eval_logger.debug(f"Error: {e}. Returning [-1, -1]") return [-1, -1] def llava_doc_to_visual(doc): return [doc["image"].convert("RGB")] def llava_doc_to_text(doc, model_specific_prompt_kwargs=None): if model_specific_prompt_kwargs is None: model_specific_prompt_kwargs = {} pre_prompt = model_specific_prompt_kwargs.get("pre_prompt", "") post_prompt = model_specific_prompt_kwargs.get("post_prompt", "") return f"{pre_prompt}{doc['question']}{post_prompt}" def llava_process_results(doc, result): """ Args: doc: a instance of the eval dataset results: [pred] Returns: a dictionary with key: metric name (in this case coco_bleu), value: metric value """ try: question = doc.get("question", "") ans1 = doc.get("gpt_answer", "") ans2 = result[0] if result else "" captions = doc.get("caption", []) context = "\n".join(captions) if isinstance(captions, list) else captions category = "llava_bench_" + doc.get("category", "") rule = rule_dict.get(category, {}) prompt = rule.get("prompt", "") role = rule.get("role", "user") content = f"[Context]\n{context}\n\n" f"[Question]\n{question}\n\n" f"[{role} 1]\n{ans1}\n\n[End of {role} 1]\n\n" f"[{role} 2]\n{ans2}\n\n[End of {role} 2]\n\n" f"[System]\n{prompt}\n\n" review, model_name = get_eval(content, 1024) scores = parse_score(review) except Exception as e: eval_logger.error(f"Error for Question ID: {doc.get('question_id', 'Unknown')}: {e}") review = "Failed to Get a Proper Review." model_name = "Failed Request" scores = [-1, -1] metric = f"gpt_eval_llava_{doc.get('category', 'all')}" category_review_dict = {"question": question, "ans1": ans1, "ans2": ans2, "context": context, "category": category, "review": review, "scores": scores, "eval_model": model_name, "content": content} non_category_review_dict = deepcopy(category_review_dict) non_category_review_dict["scores"] = [-999, -999] data_dict = {} for m in LLAVA_W_METRICS: if m == metric: data_dict[m] = category_review_dict else: data_dict[m] = non_category_review_dict data_dict["gpt_eval_llava_all"] = category_review_dict # return {"gpt_eval_llava_all": review_dict} return data_dict def llava_conv_aggregation(results): return llava_aggregation(results, "conv") def llava_complex_aggregation(results): return llava_aggregation(results, "complex") def llava_detail_aggregation(results): return llava_aggregation(results, "detail") def llava_all_aggregation(results): return llava_aggregation(results, "all") def llava_aggregation(results, category): try: scores = [] for result in results: if -999 in result["scores"]: continue scores.append(result["scores"]) stats = np.asarray(scores).mean(0).tolist() stats = [round(x, 3) for x in stats] # gpt4_score_percentage = stats[0] * 10 # model_score_percentage = stats[1] * 10 # eval_logger.info(f"Category: {category}") # eval_logger.info(f"GPT4 Score: {gpt4_score_percentage:.1f}%") # eval_logger.info(f"Model Score: {model_score_percentage:.1f}%") # eval_logger.info("=========================") return round(stats[1] / stats[0] * 100, 1) except Exception as e: eval_logger.info(f"Error in llava_aggregation: {e}, and in category: {category}") return None