lmms_eval/tasks/mmbench/mmbench_evals.py (255 lines of code) (raw):

import os.path as osp import time import random as rd import string from collections import defaultdict import requests import math import numpy as np import pandas as pd from tqdm import tqdm import logging eval_logger = logging.getLogger("lmms-eval") class MMBench_Evaluator: def __init__(self, sys_prompt="There are several options:", API_KEY="", API_URL="", model_version="gpt-3.5-turbo-0613"): self.sys_prompt = sys_prompt self.model_version = model_version self.API_KEY = API_KEY self.API_URL = API_URL def create_options_prompt(self, row_data, option_candidate): available_keys = set(row_data.keys()) & set(option_candidate) options = {cand: row_data[cand] for cand in available_keys if row_data[cand]} sorted_options = dict(sorted(options.items())) options_prompt = f"{self.sys_prompt}\n" for key, item in sorted_options.items(): if pd.notna(item) and item != "nan": options_prompt += f"{key}. {item}\n" return options_prompt.rstrip("\n"), sorted_options # Prompt Building def build_option_str(self, option_list): chars = string.ascii_uppercase s = "There are several options: \n" for c, opt in zip(chars, option_list): if not pd.isna(opt): s += f"{c}. {opt}\n" else: return s return s def extract_options(self, item): options = [] for c in "ABCD": if c in item and not pd.isna(item[c]): options.append(item[c]) else: return options return options def build_choices(self, item): ret = {} for ch in "ABCD": if not pd.isna(item[ch]): ret[ch] = item[ch] return ret def build_prompt(self, question, options, prediction): tmpl = ( "You are an AI assistant who will help me to match an answer " "with several options of a single-choice question. " "You are provided with a question, several options, and an answer, " "and you need to find which option is most similar to the answer. " "If the meaning of all options are significantly different " "from the answer, output E. " "Your should output a single uppercase character in A, B, C, D " "(if they are valid options), and E. \n" "Example 1: \n" "Question: What is the main object in image?\nOptions: A. teddy bear " "B. rabbit C. cat D. dog\nAnswer: a cute teddy bear\nYour output: A\n" "Example 2: \n" "Question: What is the main object in image?\nOptions: A. teddy bear " "B. rabbit C. cat D. dog\nAnswer: Spider\nYour output: E\n" "Example 3: \n" "Question: {}?\nOptions: {}\nAnswer: {}\nYour output: " ) return tmpl.format(question, options, prediction) # Prefetch Answers def can_infer_option(self, answer, num_choice=5): choices = string.ascii_uppercase[:num_choice] if "Failed to obtain answer via API" in answer: return False def count(splits, choices="ABCD", prefix="", suffix=""): cnt = 0 for c in choices: if prefix + c + suffix in splits: cnt += 1 return cnt splits = [x.strip() for x in answer.split()] if count(splits, choices) == 1: for ch in choices: if "A" in splits and len(splits) > 3: eval_logger.info(f"A might be a quantifier in the string: {answer}.") break if ch in splits: return ch tups = [("", "."), ("", ","), ("", ":"), ("", ")"), ("", ")."), ("(", ")"), ("(", ")."), (":", ""), (":", ","), (":", "."), (":", ")"), (":", ").")] for tup in tups: if count(splits, choices, prefix=tup[0], suffix=tup[1]) == 1: for ch in choices: if tup[0] + ch + tup[1] in splits: return ch return False def can_infer_text(self, answer, choices): answer = answer.lower() assert isinstance(choices, dict) for k in choices: assert k in "ABCD" choices[k] = str(choices[k]).lower() cands = [] for k in choices: if choices[k] in answer: cands.append(k) if len(cands) == 1: return cands[0] return False def can_infer(self, answer, choices): copt = self.can_infer_option(answer) return copt if copt else self.can_infer_text(answer, choices) def prefetch_answer(self, item): choices = self.build_choices(item) return self.can_infer(item["prediction"], choices) def _post_request(self, payload): headers = { "Authorization": f"Bearer {self.API_KEY}", "Content-Type": "application/json", } response = requests.post(self.API_URL, headers=headers, json=payload, timeout=30) response.raise_for_status() return response.json() def get_chat_response(self, prompt, temperature=0, max_tokens=256, n=1, patience=5, sleep_time=3): messages = [ {"role": "user", "content": prompt}, ] payload = {"model": self.model_version, "messages": messages, "temperature": temperature, "max_tokens": max_tokens, "n": n} while patience > 0: patience -= 1 try: response = self._post_request(payload) if n == 1: prediction = response["choices"][0]["message"]["content"].strip() if prediction and prediction != "": return prediction else: prediction = [choice["message"]["content"].strip() for choice in response["choices"]] if prediction and prediction[0] != "": return prediction except Exception as e: eval_logger.info(f"Attempt {patience + 1} failed with error: {e}") if sleep_time > 0: time.sleep(sleep_time) return "Failed to obtain answer via API" def extract_answer_from_item(self, item): options = self.extract_options(item) option_str = self.build_option_str(options) prompt = self.build_prompt(item["question"], option_str, item["prediction"]) retry = 3 choices = self.build_choices(item) ret = self.can_infer(item["prediction"], choices) if ret: return ret, item["prediction"] while retry: ans = self.get_chat_response(prompt) if "Failed to obtain answer via API" in ans: msg = "GPT API failed to answer. " eval_logger.info(msg) retry -= 1 else: ret = self.can_infer(ans, choices) if ret: return ret, ans else: eval_logger.info(f'GPT output includes 0 / >1 letter in "ABCD": {ans}') retry -= 1 if retry == 0: num_options = sum([ch in item for ch in "ABCD"]) if num_options >= 2: chars = string.ascii_uppercase[:num_options] chars = chars + "E" num_options += 1 tmp = rd.randint(0, num_options - 1) return chars[tmp], "Failed to predict, thus randomly generate one. " # Extract answer from multiple rolling records def eval_sub_data(self, sub_data, answer_map): lt = len(sub_data) GT, PRED = [], [] for i in range(lt): item = sub_data.iloc[i] idx = item["index"] GT.append(answer_map[idx]) PRED.append(self.prefetch_answer(item)) if PRED[-1] and (GT[-1] != PRED[-1]): return 0 for i in range(lt): if PRED[i]: continue else: ret, _ = self.extract_answer_from_item(sub_data.iloc[i]) PRED[i] = ret if PRED[i] != GT[i]: return 0 return 1 def calculate_hit_rates(self, data): overall_hit_rate = data["hit"].mean() category_hit_rate = {} if "category" in data.columns: # Category-based hit rate category_hit_rate = data.groupby("category")["hit"].mean().to_dict() # l2-category based hit rate l2_category_hit_rate = {} if "l2-category" in data.columns: l2_category_hit_rate = data.groupby("l2-category")["hit"].mean().to_dict() return overall_hit_rate, category_hit_rate, l2_category_hit_rate # Evaluate Results def eval_result(self, results, eval_method): rd.seed(2680) assert eval_method == "openai" # Set a large retry number to avoid failure # model = OpenAI('gpt-3.5-turbo-0613', retry=99) # double_log(f'Evaluating {eval_file}', fout) # result_file = eval_file.replace('.xlsx', f'_{eval_method}_result.pkl') result = {} # if osp.exists(result_file): # result = load(result_file) # data = load(eval_file) data = pd.DataFrame(results) data = data.sort_values(by="index") data["prediction"] = [str(x) for x in data["prediction"]] for k in data.keys(): data[k.lower() if k not in "ABCD" else k] = data.pop(k) # meta = load(meta_file) data_main = data[data["index"] < int(1e6)] data_main["hit"] = 0 cate_map = {i: c for i, c in zip(data["index"], data["category"])} answer_map = {i: c for i, c in zip(data["index"], data["answer"])} if "l2-category" in data.columns: l2_cate_map = {i: c for i, c in zip(data["index"], data["l2-category"])} lt = len(data_main) hit, tot = 0, 0 for i in range(lt): # Dealing with the normal part item_main = data_main.iloc[i] idx = item_main["index"] if idx in result: correct = result[idx] assert correct in [0, 1] hit += correct tot += 1 continue sub_data = data[data["index"] % int(1e6) == idx] ret = self.eval_sub_data(sub_data, answer_map) result[idx] = ret hit += ret tot += 1 data_main.loc[data_main["index"] == idx, "hit"] = ret # if (i + 1) % 100 == 0: # eval_logger.info(f"Evaluating: {i + 1}/{lt}, Acc: {hit / tot * 100: .2f}%. ") indices = data_main["index"] data_main = data_main.set_index("index") data_main["category"] = [cate_map[i] if not math.isnan(i) else "uncategorized" for i in indices] if "l2-category" in data_main.columns: data_main["l2-category"] = [l2_cate_map[i] if not math.isnan(i) else "uncategorized" for i in indices] overall_hit_rate, category_hit_rate, l2_category_hit_rate = self.calculate_hit_rates(data_main) if "category" in data_main.columns: print(f"Category Acc. (dev):") for category_key in category_hit_rate: if category_key == "split": continue category_percentage = category_hit_rate[category_key] * 100 print(f"\t{category_key}: {category_percentage:.3f}") if "l2-category" in data_main.columns: print(f"L2-category Acc. (dev):") for l2_category_key in l2_category_hit_rate: if l2_category_key == "split": continue l2_category_percentage = l2_category_hit_rate[l2_category_key] * 100 print(f"\t{l2_category_key}: {l2_category_percentage:.3f}") return overall_hit_rate, category_hit_rate, l2_category_hit_rate