from collections import defaultdict
import re
import ast
import random
import numpy as np
import os
import json
import logging

from lmms_eval.tasks._task_utils.file_utils import generate_submission_file

lmms_logger = logging.getLogger("lmms-eval")

MULTI_CHOICE_PROMPT = "Answer with the option letter from the given choices directly."
OPEN_ENDED_PROMPT = "Answer the question using a single word or phrase."


def replace_images_tokens(input_string):
    for i in range(1, 8):
        question_text = f"<image {i}>"
        query_text = "<image>"
        if question_text in input_string:
            input_string = input_string.replace(question_text, query_text)
    return input_string


def parse_options(options):
    option_letters = [chr(ord("A") + i) for i in range(len(options))]
    choices_str = "\n".join([f"{option_letter}. {option}" for option_letter, option in zip(option_letters, options)])
    return choices_str


def construct_prompt(doc):
    question = doc["question"]
    if doc["question_type"] == "multiple-choice":
        # Weirdly, data["options"] is a string in MMMU Huggingface dataset
        parsed_options = parse_options(ast.literal_eval(doc["options"]))
        # parsed_options already prepends a newline so no need to add space here
        question = f"{question}\n{parsed_options}\n{MULTI_CHOICE_PROMPT}"
    else:
        question = f"{question}\n{OPEN_ENDED_PROMPT}"
    return question


def mmmu_doc_to_text(doc):
    question = construct_prompt(doc)
    return replace_images_tokens(question)


def mmmu_doc_to_visual(doc):
    prompt = construct_prompt(doc)
    image_tokens = re.findall(r"<image \d+>", prompt)
    # Remove <> and  swap space as _
    image_tokens = [image_token.strip("<>").replace(" ", "_") for image_token in image_tokens]
    visual = [doc[image_token].convert("RGB") for image_token in image_tokens]
    return visual


def mmmu_process_results(doc, results):
    pred = results[0]
    if doc["question_type"] == "multiple-choice":
        index2ans, all_choices = get_multi_choice_info(ast.literal_eval(doc["options"]))
        parsed_pred = parse_multi_choice_response(pred, all_choices, index2ans)
    else:
        parsed_pred = parse_open_response(pred)
    id = doc["id"]
    mmmu_acc = {"id": id, "subdomain": extract_subset_name(doc["id"]), "question_type": doc["question_type"], "answer": doc["answer"], "parsed_pred": parsed_pred}
    return {
        "mmmu_acc": mmmu_acc,
        "submission": {
            id: pred,
        },
    }


def extract_subset_name(input_string):
    # Define a regex pattern to match "validation_" at the beginning and "_<number>" at the end
    split = input_string.split("_")[0]
    pattern = re.compile(rf"^{split}_(.+?)_\d+$")
    match = pattern.search(input_string)
    if match:
        return match.group(1)
    else:
        raise ValueError(f'No match found in "{input_string}"')


def mmmu_test_aggregate_results_for_submission(results, args):
    path = generate_submission_file("mmmu_test_for_submission.json", args)
    with open(path, "w") as f:
        json.dump(results, f)
    lmms_logger.info(f"Results saved to {path}.")


def mmmu_aggregate_results(results):
    evaluation_result = {}
    subset_to_eval_samples = defaultdict(list)
    for result in results:
        subset_to_eval_samples[result["subdomain"]].append(result)
    for subset, sub_eval_samples in subset_to_eval_samples.items():
        judge_dict, metric_dict = evaluate_mmmu(sub_eval_samples)
        metric_dict.update({"num_example": len(sub_eval_samples)})
        evaluation_result[subset] = metric_dict
    printable_results = {}
    for domain, in_domain_cats in DOMAIN_CAT2SUB_CAT.items():
        in_domain_cat_results = {}
        for cat_name in in_domain_cats:
            if cat_name in evaluation_result.keys():
                in_domain_cat_results[cat_name] = evaluation_result[cat_name]
            else:
                pass
        in_domain_ins_acc = calculate_ins_level_acc(in_domain_cat_results)
        in_domain_data_num = sum([cat_results["num_example"] for cat_results in in_domain_cat_results.values()])
        printable_results["Overall-" + domain] = {
            "num": int(in_domain_data_num),
            "acc": round(in_domain_ins_acc, 3),
        }
        # add sub category
        for cat_name, cat_results in in_domain_cat_results.items():
            printable_results[cat_name] = {
                "num": int(cat_results["num_example"]),
                "acc": round(cat_results["acc"], 3),
            }
    all_ins_acc = calculate_ins_level_acc(evaluation_result)
    printable_results["Overall"] = {
        "num": sum([cat_results["num_example"] for cat_results in evaluation_result.values()]),
        "acc": round(all_ins_acc, 3),
    }
    print(printable_results)
    return printable_results["Overall"]["acc"]


##################
# Helper functions written by official MMMU repo.
##################


def calculate_ins_level_acc(results):
    """Calculate the instruction level accuracy for given Subject results
    https://github.com/MMMU-Benchmark/MMMU/blob/51ce7f3e829c16bb44bc5445782686b4c3508794/eval/eval_utils.py#L246
    """
    acc = 0
    ins_num = 0
    for cat_results in results.values():
        acc += cat_results["acc"] * cat_results["num_example"]
        ins_num += cat_results["num_example"]
    if ins_num == 0:
        return 0
    return acc / ins_num


DOMAIN_CAT2SUB_CAT = {
    "Art and Design": ["Art", "Art_Theory", "Design", "Music"],
    "Business": ["Accounting", "Economics", "Finance", "Manage", "Marketing"],
    "Science": [
        "Biology",
        "Chemistry",
        "Geography",
        "Math",
        "Physics",
    ],
    "Health and Medicine": [
        "Basic_Medical_Science",
        "Clinical_Medicine",
        "Diagnostics_and_Laboratory_Medicine",
        "Pharmacy",
        "Public_Health",
    ],
    "Humanities and Social Science": [
        "History",
        "Literature",
        "Sociology",
        "Psychology",
    ],
    "Tech and Engineering": [
        "Agriculture",
        "Architecture_and_Engineering",
        "Computer_Science",
        "Electronics",
        "Energy_and_Power",
        "Materials",
        "Mechanical_Engineering",
    ],
}


def eval_multi_choice(gold_i, pred_i):
    """
    Evaluate a multiple choice instance.
    https://github.com/MMMU-Benchmark/MMMU/blob/51ce7f3e829c16bb44bc5445782686b4c3508794/eval/eval_utils.py#L175
    """
    correct = False
    # only they are exactly the same, we consider it as correct
    if isinstance(gold_i, list):
        for answer in gold_i:
            if answer == pred_i:
                correct = True
                break
    else:  # gold_i is a string
        if gold_i == pred_i:
            correct = True
    return correct


def eval_open(gold_i, pred_i):
    """
    Evaluate an open question instance
    https://github.com/MMMU-Benchmark/MMMU/blob/51ce7f3e829c16bb44bc5445782686b4c3508794/eval/eval_utils.py#L191
    """
    correct = False
    if isinstance(gold_i, list):
        # use float to avoid trivial matches
        norm_answers = []
        for answer in gold_i:
            norm_answers.extend(normalize_str(answer))
    else:
        norm_answers = normalize_str(gold_i)
    for pred in pred_i:  # pred is already normalized in parse response phase
        if isinstance(pred, str):  # if it's a string, then find if ans in the pred_i
            for norm_ans in norm_answers:
                # only see if the string answer in the string pred
                if isinstance(norm_ans, str) and norm_ans in pred:
                    if not correct:
                        correct = True
                    break
        else:  # it's a float number
            if pred in norm_answers:
                if not correct:
                    correct = True
                break
    return correct


def evaluate_mmmu(samples):
    """
    Batch evaluation for multiple choice and open questions.
    https://github.com/MMMU-Benchmark/MMMU/blob/51ce7f3e829c16bb44bc5445782686b4c3508794/eval/eval_utils.py#L219
    """
    pred_correct = 0
    judge_dict = dict()
    for sample in samples:
        gold_i = sample["answer"]
        pred_i = sample["parsed_pred"]
        if sample["question_type"] == "multiple-choice":
            correct = eval_multi_choice(gold_i, pred_i)
        else:  # open question
            correct = eval_open(gold_i, pred_i)

        if correct:
            judge_dict[sample["id"]] = "Correct"
            pred_correct += 1
        else:
            judge_dict[sample["id"]] = "Wrong"

    if len(samples) == 0:
        return {"acc": 0}
    return judge_dict, {"acc": pred_correct / len(samples)}


def parse_multi_choice_response(response, all_choices, index2ans):
    """
    Parse the prediction from the generated response.
    Return the predicted index e.g., A, B, C, D.
    https://github.com/MMMU-Benchmark/MMMU/blob/51ce7f3e829c16bb44bc5445782686b4c3508794/eval/eval_utils.py#L10
    """
    for char in [",", ".", "!", "?", ";", ":", "'"]:
        response = response.strip(char)
    response = " " + response + " "  # add space to avoid partial match

    index_ans = True
    ans_with_brack = False
    candidates = []
    for choice in all_choices:  # e.g., (A) (B) (C) (D)
        if f"({choice})" in response:
            candidates.append(choice)
            ans_with_brack = True

    if len(candidates) == 0:
        for choice in all_choices:  # e.g., A B C D
            if f"{choice} " in response:
                candidates.append(choice)

    if len(candidates) == 0:
        for choice in all_choices:  # e.g., A. B. C. D.
            if f"{choice}." in response:
                candidates.append(choice)

    # if all above doesn't get candidates, check if the content is larger than 5 tokens and try to parse the example
    if len(candidates) == 0 and len(response.split()) > 5:
        for index, ans in index2ans.items():
            if ans.lower() in response.lower():
                candidates.append(index)
                index_ans = False  # it's content ans.

    if len(candidates) == 0:  # still not get answer, randomly choose one.
        pred_index = random.choice(all_choices)
    elif len(candidates) > 1:
        start_indexes = []
        if index_ans:
            if ans_with_brack:
                for can in candidates:
                    index = response.rfind(f"({can})")
                    start_indexes.append(index)  # -1 will be ignored anyway
                # start_indexes = [generated_response.index(f'({can})') for can in candidates]
            else:
                for can in candidates:
                    index = response.rfind(f" {can} ")
                    start_indexes.append(index)
        else:
            for can in candidates:
                index = response.lower().rfind(index2ans[can].lower())
                start_indexes.append(index)
        # get the last one
        pred_index = candidates[np.argmax(start_indexes)]
    else:  # if only one candidate, use it.
        pred_index = candidates[0]

    return pred_index


def extract_numbers(string):
    """
    Exact all forms of numbers from a string with regex.
    https://github.com/MMMU-Benchmark/MMMU/blob/51ce7f3e829c16bb44bc5445782686b4c3508794/eval/eval_utils.py#L100
    """
    # Pattern for numbers with commas
    pattern_commas = r"-?\b\d{1,3}(?:,\d{3})+\b"
    # Pattern for scientific notation
    pattern_scientific = r"-?\d+(?:\.\d+)?[eE][+-]?\d+"
    # Pattern for simple numbers without commas
    pattern_simple = r"-?(?:\d+\.\d+|\.\d+|\d+\b)(?![eE][+-]?\d+)(?![,\d])"

    # Extract numbers with commas
    numbers_with_commas = re.findall(pattern_commas, string)
    # Extract numbers in scientific notation
    numbers_scientific = re.findall(pattern_scientific, string)
    # Extract simple numbers without commas
    numbers_simple = re.findall(pattern_simple, string)

    # Combine all extracted numbersz
    all_numbers = numbers_with_commas + numbers_scientific + numbers_simple
    return all_numbers


def check_is_number(string):
    """
    Check if the given string a number.
    https://github.com/MMMU-Benchmark/MMMU/blob/51ce7f3e829c16bb44bc5445782686b4c3508794/eval/eval_utils.py#L65
    """
    try:
        float(string.replace(",", ""))
        return True
    except ValueError:
        # check if there's comma inside
        return False


def normalize_str(string):
    """
    Normalize the str to lower case and make them float numbers if possible.
    https://github.com/MMMU-Benchmark/MMMU/blob/51ce7f3e829c16bb44bc5445782686b4c3508794/eval/eval_utils.py#L76
    """
    # check if characters in the string

    # if number, numerize it.
    string = string.strip()

    is_number = check_is_number(string)

    if is_number:
        string = string.replace(",", "")
        string = float(string)
        # leave 2 decimal
        string = round(string, 2)
        return [string]
    else:  # it's likely to be a string
        # lower it
        string = string.lower()
        if len(string) == 1:
            return [" " + string, string + " "]  # avoid trivial matches
        return [string]


def parse_open_response(response):
    """
    Parse the prediction from the generated response.
    Return a list of predicted strings or numbers.
    https://github.com/MMMU-Benchmark/MMMU/blob/51ce7f3e829c16bb44bc5445782686b4c3508794/eval/eval_utils.py#L122
    """

    # content = content.strip("\n").strip(".").strip(" ")
    def get_key_subresponses(response):
        key_responses = []
        response = response.strip().strip(".").lower()
        sub_responses = re.split(r"\.\s(?=[A-Z])|\n", response)
        indicators_of_keys = [
            "could be ",
            "so ",
            "is ",
            "thus ",
            "therefore ",
            "final ",
            "answer ",
            "result ",
        ]
        key_responses = []
        for index, resp in enumerate(sub_responses):
            # if last one, accept it's an equation (the entire response can be just one sentence with equation)
            if index == len(sub_responses) - 1:
                indicators_of_keys.extend(["="])
            shortest_key_response = None  # the shortest response that may contain the answer (tail part of the response)
            for indicator in indicators_of_keys:
                if indicator in resp:
                    if not shortest_key_response:
                        shortest_key_response = resp.split(indicator)[-1].strip()
                    else:
                        if len(resp.split(indicator)[-1].strip()) < len(shortest_key_response):
                            shortest_key_response = resp.split(indicator)[-1].strip()
                    # key_responses.append(resp.split(indicator)[1].strip())

            if shortest_key_response:
                # and it's not trivial
                if shortest_key_response.strip() not in [
                    ":",
                    ",",
                    ".",
                    "!",
                    "?",
                    ";",
                    ":",
                    "'",
                ]:
                    key_responses.append(shortest_key_response)
        if len(key_responses) == 0:  # did not found any
            return [response]
        return key_responses

    # pdb.set_trace()
    key_responses = get_key_subresponses(response)

    pred_list = key_responses.copy()  # keep the original string response
    for resp in key_responses:
        pred_list.extend(extract_numbers(resp))

    tmp_pred_list = []
    for i in range(len(pred_list)):
        tmp_pred_list.extend(normalize_str(pred_list[i]))
    pred_list = tmp_pred_list

    # remove duplicates
    pred_list = list(set(pred_list))

    return pred_list


def get_multi_choice_info(options):
    """
    Given the list of options for multiple choice question
    Return the index2ans and all_choices
    https://github.com/MMMU-Benchmark/MMMU/blob/51ce7f3e829c16bb44bc5445782686b4c3508794/eval/data_utils.py#L54
    """

    start_chr = "A"
    all_choices = []
    index2ans = {}
    for i, option in enumerate(options):
        index2ans[chr(ord(start_chr) + i)] = option
        all_choices.append(chr(ord(start_chr) + i))

    return index2ans, all_choices
