lmms_eval/tasks/seedbench_2/utils.py (44 lines of code) (raw):

import json def seed_doc_to_visual(doc): return [image.convert("RGB") for image in doc["image"]] def parse_choice_img(choice: str, img_token: str): if "jpg" in choice or "png" in choice: return img_token return choice def seed_doc_to_text(doc, model_specific_kwargs=None): question = doc["question"] question.replace("<img>", model_specific_kwargs["img_token"]) question += "\n" + f"A. {parse_choice_img(doc['choice_a'], model_specific_kwargs['img_token'])}\n" question += f"B. {parse_choice_img(doc['choice_b'], model_specific_kwargs['img_token'])}\n" question += f"C. {parse_choice_img(doc['choice_c'], model_specific_kwargs['img_token'])}\n" question += f"D. {parse_choice_img(doc['choice_d'], model_specific_kwargs['img_token'])}" if doc["data_type"] == "Image Generation": num_img_in_question = len(doc["data_id"]) - 4 prepend_tokens = [model_specific_kwargs["img_token"]] * num_img_in_question question = " ".join(prepend_tokens) + "\n" + question return f"{question}\n{model_specific_kwargs['post_prompt']}" def seed_process_result(doc, result): pred = result[0].strip() if len(pred) > 1: pred = pred[0] answer = doc["answer"] data_type = doc["data_type"].split(" ") data_type = "_".join(data_type) return {f"seed_{data_type}": {"pred": pred, "answer": answer, "question_id": doc["question_id"]}, f"seed_all": {"pred": pred, "answer": answer, "question_id": doc["question_id"]}} def seed_aggregation_result(results): total_count = 0 total_correct = 0 for result in results: if result["pred"] == result["answer"]: total_correct += 1 total_count += 1 return total_correct / total_count if total_count != 0 else 0 def seed_aggregation_result_all(results): score = seed_aggregation_result(results) stored_results = [] for result in results: stored_results.append({"question_id": result["question_id"], "prediction": result["pred"]}) with open("./seed_submission.json", "w") as f: json.dump(stored_results, f, indent=4) print("Storing files for seed_submission ...") return score