tools/make_hf_dataset.ipynb (120 lines of code) (raw):
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# This notebook will guide you to make correct format of Huggingface dataset, in proper parquet format and visualizable in Huggingface dataset hub.\n",
"# We will take the example of the dataset \"Otter-AI/MMVet\" and convert it to the proper format."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from datasets import load_dataset\n",
"\n",
"data_path = \"Otter-AI/MMVet\"\n",
"df = load_dataset(data_path, split=\"test\").to_pandas()\n",
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from datasets import Dataset, Features, Value, Image\n",
"import pandas as pd\n",
"\n",
"# Define the features for the dataset\n",
"features = Features(\n",
" {\n",
" \"question_id\": Value(dtype=\"string\"),\n",
" \"image\": Image(),\n",
" \"question\": Value(dtype=\"string\"),\n",
" \"answer\": Value(dtype=\"string\"),\n",
" \"image_source\": Value(dtype=\"string\"),\n",
" \"capability\": Value(dtype=\"string\"),\n",
" # Add other fields as necessary\n",
" }\n",
")\n",
"\n",
"df_items = {\n",
" \"question_id\": [],\n",
" \"image\": [],\n",
" \"question\": [],\n",
" \"answer\": [],\n",
" \"image_source\": [],\n",
" \"capability\": [],\n",
"}\n",
"\n",
"for idx, row in df.iterrows():\n",
" df_items[\"question_id\"].append(str(row[\"id\"]))\n",
" image = {\"bytes\": row[\"images\"][0][\"bytes\"], \"path\": \"\"}\n",
" df_items[\"image\"].append(image)\n",
" df_items[\"question\"].append(str(row[\"instruction\"]))\n",
" df_items[\"answer\"].append(str(row[\"answer\"]))\n",
" df_items[\"image_source\"].append(str(row[\"image_source\"]))\n",
" df_items[\"capability\"].append(\",\".join(list(row[\"capability\"])))\n",
" # Add other fields as necessary\n",
"\n",
"df_items = pd.DataFrame(df_items)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df_items.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dataset = Dataset.from_pandas(df_items, features=features)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"hub_dataset_path = \"lmms-lab/MMVet\"\n",
"dataset.push_to_hub(repo_id=hub_dataset_path, split=\"test\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "lmms-eval",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.18"
}
},
"nbformat": 4,
"nbformat_minor": 2
}