in inference.py [0:0]
def infer(image_path, model, processor):
prompts = ["<COLOR>", "<LIGHTING>", "<LIGHTING_TYPE>", "<COMPOSITION>"]
image = Image.open(image_path)
for prompt in prompts:
inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda", torch.float16)
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
early_stopping=False,
do_sample=False,
num_beams=3,
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(
generated_text, task=prompt, image_size=(image.width, image.height)
)
print(parsed_answer)