def cli_evaluate_single()

in evaluation.py [0:0]


def cli_evaluate_single(args: Union[argparse.Namespace, None] = None) -> None:
    selected_task_list = args.tasks.split(",") if args.tasks else None

    if args.include_path is not None:
        eval_logger.info(f"Including path: {args.include_path}")
    task_manager = TaskManager(args.verbosity, include_path=args.include_path, model_name=args.model)

    # update the evaluation tracker args with the output path and the HF token
    if args.output_path:
        args.hf_hub_log_args += f",output_path={args.output_path}"
    if os.environ.get("HF_TOKEN", None):
        args.hf_hub_log_args += f",token={os.environ.get('HF_TOKEN')}"

    evaluation_tracker_args = simple_parse_args_string(args.hf_hub_log_args)
    eval_logger.info(f"Evaluation tracker args: {evaluation_tracker_args}")

    evaluation_tracker = EvaluationTracker(**evaluation_tracker_args)

    if args.predict_only:
        args.log_samples = True
    if (args.log_samples or args.predict_only) and not args.output_path:
        raise ValueError("Specify --output_path if providing --log_samples or --predict_only")

    if args.fewshot_as_multiturn and args.apply_chat_template is False:
        raise ValueError("If fewshot_as_multiturn is set, apply_chat_template must be set to True.")

    if (args.num_fewshot is None or args.num_fewshot == 0) and args.fewshot_as_multiturn:
        raise ValueError("If fewshot_as_multiturn is set, num_fewshot must be greater than 0.")

    if args.include_path is not None:
        eval_logger.info(f"Including path: {args.include_path}")

    if "push_samples_to_hub" in evaluation_tracker_args and not args.log_samples:
        eval_logger.warning("Pushing samples to the Hub requires --log_samples to be set. Samples will not be pushed to the Hub.")

    if args.limit:
        eval_logger.warning(" --limit SHOULD ONLY BE USED FOR TESTING." "REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT.")

    if os.environ.get("LMMS_EVAL_PLUGINS", None):
        args.include_path = [args.include_path] if args.include_path else []
        for plugin in os.environ["LMMS_EVAL_PLUGINS"].split(","):
            package_tasks_location = importlib.util.find_spec(f"{plugin}.tasks").submodule_search_locations[0]
            args.include_path.append(package_tasks_location)

    if args.tasks is None:
        eval_logger.error("Need to specify task to evaluate.")
        sys.exit()
    elif args.tasks == "list":
        eval_logger.info("Available Tasks:\n - {}".format(f"\n - ".join(sorted(task_manager.all_tasks))))
        sys.exit()
    elif args.tasks == "list_groups":
        eval_logger.info(task_manager.list_all_tasks(list_subtasks=False, list_tags=False))
        sys.exit()
    elif args.tasks == "list_tags":
        eval_logger.info(task_manager.list_all_tasks(list_groups=False, list_subtasks=False))
        sys.exit()
    elif args.tasks == "list_subtasks":
        eval_logger.info(task_manager.list_all_tasks(list_groups=False, list_tags=False))
        sys.exit()
    elif args.tasks == "list_with_num":
        log_message = (
            "\n" + "=" * 70 + "\n" + "\n\tYou are trying to check all the numbers in each task." + "\n\tThis action will download the complete dataset." + "\n\tIf the results are not clear initially, call this again." + "\n\n" + "=" * 70
        )
        eval_logger.info(log_message)
        for task_name in sorted(task_manager.list_all_tasks()):
            try:
                task_dict = get_task_dict([task_name], model_name="llava")
                task_obj = task_dict[task_name]
                if type(task_obj) == tuple:
                    group, task_obj = task_obj
                    if task_obj is None:
                        continue
                eval_logger.info(f"\nTask : {task_obj.config.task}\n - #num : {len(task_obj.test_docs()) if task_obj.has_test_docs() else len(task_obj.validation_docs())}")
            except Exception as e:
                eval_logger.debug(f"\nTask : {task_name} fail to load \n Exception : \n {e}")
        sys.exit()
    else:
        if os.path.isdir(args.tasks):
            import glob

            task_names = []
            yaml_path = os.path.join(args.tasks, "*.yaml")
            for yaml_file in glob.glob(yaml_path):
                config = utils.load_yaml_config(yaml_file)
                task_names.append(config)
        else:
            task_list = args.tasks.split(",")
            task_names = task_manager.match_tasks(task_list)
            for task in [task for task in task_list if task not in task_names]:
                if os.path.isfile(task):
                    config = utils.load_yaml_config(task)
                    task_names.append(config)
            task_missing = [task for task in task_list if task not in task_names and "*" not in task]  # we don't want errors if a wildcard ("*") task name was used

            if task_missing:
                missing = ", ".join(task_missing)
                eval_logger.error(
                    f"Tasks were not found: {missing}\n" f"{utils.SPACING}Try `lmms-eval --tasks list` for list of available tasks",
                )
                raise ValueError(
                    f"Tasks not found: {missing}. Try `lmms-eval --tasks {{list_groups,list_subtasks,list_tags,list}}` to list out all available names for task groupings; only (sub)tasks; tags; or all of the above, or pass '--verbosity DEBUG' to troubleshoot task registration issues."
                )

    eval_logger.info(f"Selected Tasks: {task_names}")
    request_caching_args = request_caching_arg_to_dict(cache_requests=args.cache_requests)
    datetime_str = utils.get_datetime_str(timezone=args.timezone)

    wrapped_model = NanoVLMWrapper(
        model=args.model,
        device=args.device,
        batch_size=int(args.batch_size),
    )

    results = evaluator.simple_evaluate(
        model=wrapped_model,
        model_args=args.model_args,
        tasks=task_names,
        num_fewshot=args.num_fewshot,
        batch_size=args.batch_size,
        max_batch_size=args.max_batch_size,
        device=args.device,
        use_cache=args.use_cache,
        limit=args.limit,
        check_integrity=args.check_integrity,
        write_out=args.write_out,
        log_samples=args.log_samples,
        evaluation_tracker=evaluation_tracker,
        system_instruction=args.system_instruction,
        apply_chat_template=args.apply_chat_template,
        fewshot_as_multiturn=args.fewshot_as_multiturn,
        gen_kwargs=args.gen_kwargs,
        task_manager=task_manager,
        verbosity=args.verbosity,
        predict_only=args.predict_only,
        random_seed=args.seed[0],
        numpy_random_seed=args.seed[1],
        torch_random_seed=args.seed[2],
        fewshot_random_seed=args.seed[3],
        cli_args=args,
        datetime_str=datetime_str,
        distributed_executor_backend='torchrun' if (torch.distributed.is_available() and torch.distributed.is_initialized()) else 'accelerate',
        **request_caching_args,
    )

    if results is not None:
        if args.log_samples:
            samples = results.pop("samples")
        else:
            samples = None
        dumped = json.dumps(results, indent=4, default=_handle_non_serializable)
        if args.show_config:
            print(dumped)

        batch_sizes = ",".join(map(str, results["config"]["batch_sizes"]))

        evaluation_tracker.save_results_aggregated(results=results, samples=samples if args.log_samples else None, datetime_str=datetime_str)

        if args.log_samples:
            for task_name, config in results["configs"].items():
                evaluation_tracker.save_results_samples(task_name=task_name, samples=samples[task_name])

        if evaluation_tracker.push_results_to_hub or evaluation_tracker.push_samples_to_hub:
            evaluation_tracker.recreate_metadata_card()

        return results, samples
    return None, None