models/config.py (67 lines of code) (raw):

from dataclasses import dataclass, field @dataclass class VLMConfig: vit_hidden_dim: int = 768 vit_inter_dim: int = 4 * vit_hidden_dim vit_patch_size: int = 16 vit_img_size: int = 256 vit_n_heads: int = 12 vit_dropout: float = 0.0 vit_n_blocks: int = 12 vit_ln_eps: float = 1e-6 vit_cls_flag: bool = False vit_model_type: str = 'google/siglip2-base-patch16-256' lm_hidden_dim: int = 576 lm_inter_dim: int = 1536 lm_rms_eps: float = 1e-5 lm_re_base: int = 100000 lm_max_position_embeddings: int = 8192 lm_base_vocab_size: int = 49152 extra_token_amount: int = 1 # Number of extra tokens for the VLM (image start, image end, image token) lm_vocab_size: int = lm_base_vocab_size + extra_token_amount # Not a great way to do this, but it works for now (vlm_extra_tokens cannot be a dict, since this is mutable, and a Field has no len() function) lm_n_heads: int = 9 lm_n_kv_heads: int = 3 lm_dropout: float = 0.0 lm_n_blocks: int = 30 lm_attn_scaling: float = 1.0 lm_max_length: int = 1024 lm_use_tokens: bool = False # Decide if the LM expects tokens or embeddings as input (if using as a backbone for the VLM, set to False) lm_tie_weights: bool = True # Decide if you want to tie the LM Head weight to the token embedding weights lm_model_type: str = 'HuggingFaceTB/SmolLM2-360M-Instruct' lm_tokenizer: str = 'HuggingFaceTB/SmolLM2-360M-Instruct' lm_chat_template: str = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}" lm_eos_token_id: int = 0 mp_pixel_shuffle_factor: int = 2 mp_image_token_length: int = 64 vlm_extra_tokens: dict[str, str] = field(default_factory=lambda: {"image_token": "<|image|>"})#, "boi_token": "<|image_start|>", "eoi_token": "<|image_end|>"}) vlm_load_backbone_weights: bool = True vlm_checkpoint_path: str = 'checkpoints' hf_repo_name: str = 'nanoVLM' @dataclass class TrainConfig: lr_mp: float = 0.00512 lr_backbones: float = 5e-5 data_cutoff_idx: int = None val_ratio: float = 0.025 batch_size: int = 16 gradient_accumulation_steps: int = 4 mmstar_batch_size: int = 32 max_grad_norm: float = 1.0 eval_in_epochs: bool = True eval_interval: int = gradient_accumulation_steps * 100 stats_log_interval: int = gradient_accumulation_steps * 25 max_training_steps: int = 5000 max_images_per_example: int = 4 max_images_per_knapsack: int = 18 max_sample_length: int = 1024 compile: bool = False resume_from_vlm_checkpoint: bool = False # Indicate if the training should be resumed from a checkpoint of the whole VLM or you want to start from scratch train_dataset_path: str = 'HuggingFaceM4/the_cauldron' train_dataset_name: tuple[str, ...] = ("ai2d", "aokvqa", "chart2text", "chartqa", "clevr", "cocoqa", "datikz", "diagram_image_to_text", "docvqa", "dvqa", "figureqa", "finqa", "geomverse", "hateful_memes", "hitab", "iam", "iconqa", "infographic_vqa", "intergps", "localized_narratives", "mapqa", "multihiertt", "ocrvqa", "plotqa", "raven", "rendered_text", "robut_sqa", "robut_wikisql", "robut_wtq", "scienceqa", "screen2words", "st_vqa", "tabmwp", "tallyqa", "tat_qa", "textcaps", "textvqa", "tqa", "vistext", "visual7w", "visualmrc", "vqarad", "vqav2", "vsr", "websight") test_dataset_path: str = "Lin-Chen/MMStar" wandb_entity: str = "HuggingFace" # Indicate the entity to log to in wandb log_wandb: bool = True use_lmms_eval: bool = True # Use lmms-eval for evaluation lmms_eval_tasks: str = 'mmstar,mmmu,ocrbench,textvqa' # Pass additional task as one string, seperated by commas without spaces (e.g. 'mmstar,mmmu,ocrbench') lmms_eval_limit: int = None lmms_eval_batch_size: int = 128