in sagemaker/22_accelerate_sagemaker_examples/src/text-classification/train_using_s3_data.py [0:0]
def main():
parser = argparse.ArgumentParser(description="Simple example of training script.")
parser.add_argument(
"--mixed_precision",
type=str,
default="no",
choices=["no", "fp16", "bf16"],
help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU.",
)
parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU.")
parser.add_argument(
"--checkpointing_steps",
type=str,
default=None,
help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.",
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help="If the training should continue from a checkpoint folder.",
)
parser.add_argument(
"--with_tracking",
action="store_true",
help="Whether to load in all available experiment trackers from the environment and use them for logging.",
)
parser.add_argument(
"--logging_dir",
type=str,
default=os.path.join(os.environ["SM_OUTPUT_DATA_DIR"], "logs"),
help="Location on where to store experiment tracking logs`",
)
parser.add_argument("--output_dir", type=str, default=os.environ["SM_MODEL_DIR"])
parser.add_argument("--training_dir", type=str, default=os.environ["SM_CHANNEL_TRAIN"])
parser.add_argument("--validation_dir", type=str, default=os.environ["SM_CHANNEL_VALIDATION"])
args = parser.parse_args()
config = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16}
training_function(config, args)