def parse_args()

in sagemaker/22_accelerate_sagemaker_examples/src/seq2seq/run_seq2seq_no_trainer.py [0:0]


def parse_args():
    parser = argparse.ArgumentParser(description="Finetune a transformers model on a summarization task")
    parser.add_argument(
        "--dataset_name",
        type=str,
        default=None,
        help="The name of the dataset to use (via the datasets library).",
    )
    parser.add_argument(
        "--dataset_config_name",
        type=str,
        default=None,
        help="The configuration name of the dataset to use (via the datasets library).",
    )
    parser.add_argument(
        "--train_file", type=str, default=None, help="A csv or a json file containing the training data."
    )
    parser.add_argument(
        "--validation_file", type=str, default=None, help="A csv or a json file containing the validation data."
    )
    parser.add_argument(
        "--ignore_pad_token_for_loss",
        type=bool,
        default=True,
        help="Whether to ignore the tokens corresponding to padded labels in the loss computation or not.",
    )
    parser.add_argument(
        "--max_source_length",
        type=int,
        default=1024,
        help=(
            "The maximum total input sequence length after "
            "tokenization.Sequences longer than this will be truncated, sequences shorter will be padded."
        ),
    )
    parser.add_argument(
        "--source_prefix",
        type=str,
        default=None,
        help="A prefix to add before every source text (useful for T5 models).",
    )
    parser.add_argument(
        "--preprocessing_num_workers",
        type=int,
        default=None,
        help="The number of processes to use for the preprocessing.",
    )
    parser.add_argument(
        "--overwrite_cache", type=bool, default=None, help="Overwrite the cached training and evaluation sets"
    )
    parser.add_argument(
        "--max_target_length",
        type=int,
        default=128,
        help=(
            "The maximum total sequence length for target text after "
            "tokenization. Sequences longer than this will be truncated, sequences shorter will be padded."
            "during ``evaluate`` and ``predict``."
        ),
    )
    parser.add_argument(
        "--val_max_target_length",
        type=int,
        default=None,
        help=(
            "The maximum total sequence length for validation "
            "target text after tokenization.Sequences longer than this will be truncated, sequences shorter will be "
            "padded. Will default to `max_target_length`.This argument is also used to override the ``max_length`` "
            "param of ``model.generate``, which is used during ``evaluate`` and ``predict``."
        ),
    )
    # New Code #
    parser.add_argument(
        "--val_min_target_length",
        type=int,
        default=10,
        help=(
            "The minimum total sequence length for validation "
            "target text after tokenization.Sequences longer than this will be truncated, sequences shorter will be "
            "padded. Will default to `max_target_length`.This argument is also used to override the ``max_length`` "
            "param of ``model.generate``, which is used during ``evaluate`` and ``predict``."
        ),
    )
    parser.add_argument(
        "--n_train",
        type=int,
        default=2000,
        help=("Number of training examples to use. If None, all training examples will be used."),
    )
    parser.add_argument(
        "--n_val",
        type=int,
        default=500,
        help=("Number of validation examples to use. If None, all validation examples will be used."),
    )
    parser.add_argument(
        "--n_val_batch_generations",
        type=int,
        default=5,
        help=("Number of validation examples to use. If None, all validation examples will be used."),
    )
    parser.add_argument(
        "--max_length",
        type=int,
        default=128,
        help=(
            "The maximum total input sequence length after tokenization. Sequences longer than this will be truncated,"
            " sequences shorter will be padded if `--pad_to_max_lengh` is passed."
        ),
    )
    parser.add_argument(
        "--num_beams",
        type=int,
        default=None,
        help=(
            "Number of beams to use for evaluation. This argument will be "
            "passed to ``model.generate``, which is used during ``evaluate`` and ``predict``."
        ),
    )
    parser.add_argument(
        "--pad_to_max_length",
        type=bool,
        default=False,
        help="If passed, pad all samples to `max_length`. Otherwise, dynamic padding is used.",
    )
    parser.add_argument(
        "--model_name_or_path",
        type=str,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
        required=False,
    )
    parser.add_argument(
        "--config_name",
        type=str,
        default=None,
        help="Pretrained config name or path if not the same as model_name",
    )
    parser.add_argument(
        "--tokenizer_name",
        type=str,
        default=None,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--text_column",
        type=str,
        default=None,
        help="The name of the column in the datasets containing the full texts (for summarization).",
    )
    parser.add_argument(
        "--summary_column",
        type=str,
        default=None,
        help="The name of the column in the datasets containing the summaries (for summarization).",
    )
    parser.add_argument(
        "--use_slow_tokenizer",
        type=bool,
        default=False,
        help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).",
    )
    parser.add_argument(
        "--per_device_train_batch_size",
        type=int,
        default=8,
        help="Batch size (per device) for the training dataloader.",
    )
    parser.add_argument(
        "--per_device_eval_batch_size",
        type=int,
        default=8,
        help="Batch size (per device) for the evaluation dataloader.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=5e-5,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.")
    parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.")
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--lr_scheduler_type",
        type=SchedulerType,
        default="linear",
        help="The scheduler type to use.",
        choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
    )
    parser.add_argument(
        "--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.")
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    parser.add_argument(
        "--model_type",
        type=str,
        default=None,
        help="Model type to use if training from scratch.",
        choices=MODEL_TYPES,
    )
    parser.add_argument("--push_to_hub", type=bool, default=False, help="Whether or not to push the model to the Hub.")
    parser.add_argument(
        "--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`."
    )
    parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--checkpointing_steps",
        type=str,
        default=None,
        help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.",
    )
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help="If the training should continue from a checkpoint folder.",
    )
    # New Code #
    # Whether to load the best model at the end of training
    parser.add_argument(
        "--load_best_model",
        type=bool,
        default=False,
        help="Whether to load the best model at the end of training",
    )
    # New Code #
    parser.add_argument(
        "--logging_steps",
        type=int,
        default=None,
        help="log every n steps",
    )
    parser.add_argument(
        "--with_tracking",
        type=bool,
        default=False,
        help="Whether to enable experiment trackers for logging.",
    )
    parser.add_argument(
        "--report_to",
        type=str,
        default="all",
        help=(
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,'
            ' `"wandb"` and `"comet_ml"`. Use `"all"` (default) to report to all integrations.'
            "Only applicable when `--with_tracking` is passed."
        ),
    )
    parser.add_argument(
        "--report_name",
        type=str,
        default="chatbot_no_trainer",
        help=("The name of the experiment tracking folder. Only applicable when `--with_tracking` is passed."),
    )
    args = parser.parse_args()

    # Sanity checks
    if args.dataset_name is None and args.train_file is None and args.validation_file is None:
        raise ValueError("Need either a dataset name or a training/validation file.")
    else:
        if args.train_file is not None:
            extension = args.train_file.split(".")[-1]
            assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
        if args.validation_file is not None:
            extension = args.validation_file.split(".")[-1]
            assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."

    if args.push_to_hub:
        assert args.output_dir is not None, "Need an `output_dir` to create a repo when `--push_to_hub` is passed."

    return args