def train_qa_s2s()

in longform-qa/lfqa_utils.py [0:0]


def train_qa_s2s(qa_s2s_model, qa_s2s_tokenizer, s2s_train_dset, s2s_valid_dset, s2s_args):
    s2s_optimizer = AdamW(qa_s2s_model.parameters(), lr=s2s_args.learning_rate, eps=1e-8)
    s2s_scheduler = get_linear_schedule_with_warmup(
        s2s_optimizer,
        num_warmup_steps=400,
        num_training_steps=(s2s_args.num_epochs + 1) * math.ceil(len(s2s_train_dset) / s2s_args.batch_size),
    )
    for e in range(s2s_args.num_epochs):
        train_qa_s2s_epoch(
            qa_s2s_model,
            s2s_train_dset,
            qa_s2s_tokenizer,
            s2s_optimizer,
            s2s_scheduler,
            s2s_args,
            e,
            curriculum=(e == 0),
        )
        m_save_dict = {
            "model": qa_s2s_model.state_dict(),
            "optimizer": s2s_optimizer.state_dict(),
            "scheduler": s2s_scheduler.state_dict(),
        }
        print("Saving model {}".format(s2s_args.model_save_name))
        eval_qa_s2s_epoch(qa_s2s_model, s2s_valid_dset, qa_s2s_tokenizer, s2s_args)
        torch.save(m_save_dict, "{}_{}.pth".format(s2s_args.model_save_name, e))