in sagemaker/26_document_ai_donut/scripts/inference.py [0:0]
def predict_fn(data, model_and_processor):
# unpack model and tokenizer
model, processor = model_and_processor
image = data.get("inputs")
pixel_values = processor.feature_extractor(image, return_tensors="pt").pixel_values
task_prompt = "<s>" # start of sequence token for decoder since we are not having a user prompt
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
# run inference
outputs = model.generate(
pixel_values.to(device),
decoder_input_ids=decoder_input_ids.to(device),
max_length=model.decoder.config.max_position_embeddings,
early_stopping=True,
pad_token_id=processor.tokenizer.pad_token_id,
eos_token_id=processor.tokenizer.eos_token_id,
use_cache=True,
num_beams=1,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
return_dict_in_generate=True,
)
# process output
prediction = processor.batch_decode(outputs.sequences)[0]
prediction = processor.token2json(prediction)
return prediction