in sagemaker/24_train_bloom_peft_lora/scripts/run_clm.py [0:0]
def training_function(args):
# set seed
set_seed(args.seed)
dataset = load_from_disk(args.dataset_path)
# load model from the hub
model = AutoModelForCausalLM.from_pretrained(
args.model_id,
use_cache=False if args.gradient_checkpointing else True, # this is needed for gradient checkpointing
device_map="auto",
load_in_8bit=True,
)
# create peft config
model = create_peft_config(model)
# Define training args
output_dir = "/tmp"
training_args = TrainingArguments(
output_dir=output_dir,
overwrite_output_dir=True,
per_device_train_batch_size=args.per_device_train_batch_size,
bf16=args.bf16, # Use BF16 if available
learning_rate=args.lr,
num_train_epochs=args.epochs,
gradient_checkpointing=args.gradient_checkpointing,
gradient_accumulation_steps=2,
# logging strategies
logging_dir=f"{output_dir}/logs",
logging_strategy="steps",
logging_steps=10,
save_strategy="no",
optim="adafactor",
)
# Create Trainer instance
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset,
data_collator=default_data_collator,
)
# Start training
trainer.train()
# merge adapter weights with base model and save
# save int 8 model
trainer.model.save_pretrained(output_dir)
# clear memory
del model
del trainer
# load PEFT model in fp16
peft_config = PeftConfig.from_pretrained(output_dir)
model = AutoModelForCausalLM.from_pretrained(
peft_config.base_model_name_or_path,
return_dict=True,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
)
model = PeftModel.from_pretrained(model, output_dir)
model.eval()
# Merge LoRA and base model and save
merged_model = model.merge_and_unload()
merged_model.save_pretrained("/opt/ml/model/")
# save tokenizer for easy inference
tokenizer = AutoTokenizer.from_pretrained(args.model_id)
tokenizer.save_pretrained("/opt/ml/model/")
# copy inference script
os.makedirs("/opt/ml/model/code", exist_ok=True)
shutil.copyfile(
os.path.join(os.path.dirname(__file__), "inference.py"),
"/opt/ml/model/code/inference.py",
)
shutil.copyfile(
os.path.join(os.path.dirname(__file__), "requirements.txt"),
"/opt/ml/model/code/requirements.txt",
)