in sagemaker/23_stable_diffusion_inference/code/inference.py [0:0]
def predict_fn(data, pipe):
# get prompt & parameters
prompt = data.pop("inputs", data)
# set valid HP for stable diffusion
num_inference_steps = data.pop("num_inference_steps", 50)
guidance_scale = data.pop("guidance_scale", 7.5)
num_images_per_prompt = data.pop("num_images_per_prompt", 4)
# run generation with parameters
generated_images = pipe(prompt,num_inference_steps=num_inference_steps,guidance_scale=guidance_scale,num_images_per_prompt=num_images_per_prompt)["images"]
# create response
encoded_images=[]
for image in generated_images:
buffered = BytesIO()
image.save(buffered, format="JPEG")
encoded_images.append(base64.b64encode(buffered.getvalue()).decode())
# create response
return {"generated_images": encoded_images}