in sagemaker/28_train_llms_with_qlora/scripts/run_clm.py [0:0]
def training_function(args):
# set seed
set_seed(args.seed)
dataset = load_from_disk(args.dataset_path)
# load model from the hub with a bnb config
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
model = AutoModelForCausalLM.from_pretrained(
args.model_id,
use_cache=False if args.gradient_checkpointing else True, # this is needed for gradient checkpointing
trust_remote_code=True, # ATTENTION: This allows remote code execution
device_map="auto",
quantization_config=bnb_config,
)
# create peft config
model = create_peft_config(model, args.gradient_checkpointing)
# Define training args
output_dir = "/tmp"
training_args = TrainingArguments(
output_dir=output_dir,
overwrite_output_dir=True,
per_device_train_batch_size=args.per_device_train_batch_size,
bf16=args.bf16, # Use BF16 if available
learning_rate=args.lr,
num_train_epochs=args.epochs,
gradient_checkpointing=args.gradient_checkpointing,
# logging strategies
logging_dir=f"{output_dir}/logs",
logging_strategy="steps",
logging_steps=10,
save_strategy="no",
)
# Create Trainer instance
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset,
data_collator=default_data_collator,
)
# pre-process the model by upcasting the layer norms in float 32 for
for name, module in trainer.model.named_modules():
if "norm" in name:
module = module.to(torch.float32)
# Start training
trainer.train()
if args.merge_weights:
# merge adapter weights with base model and save
# save int 4 model
trainer.model.save_pretrained(output_dir, safe_serialization=False)
# clear memory
del model
del trainer
torch.cuda.empty_cache()
from peft import AutoPeftModelForCausalLM
# load PEFT model in fp16
offload_folder = "/tmp/offload"
model = AutoPeftModelForCausalLM.from_pretrained(
output_dir,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
trust_remote_code=True, # ATTENTION: This allows remote code execution
)
# Merge LoRA and base model and save
merged_model = model.merge_and_unload()
merged_model.save_pretrained("/opt/ml/model/",safe_serialization=True)
else:
trainer.model.save_pretrained("/opt/ml/model/", safe_serialization=True)
# save tokenizer for easy inference
tokenizer = AutoTokenizer.from_pretrained(args.model_id, trust_remote_code=True)
tokenizer.save_pretrained("/opt/ml/model/")