course/en/chapter3/section3.ipynb (206 lines of code) (raw):

{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Fine-tuning a model with the Trainer API" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Install the Transformers, Datasets, and Evaluate libraries to run this notebook." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "!pip install datasets evaluate transformers[sentencepiece]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from datasets import load_dataset\n", "from transformers import AutoTokenizer, DataCollatorWithPadding\n", "\n", "raw_datasets = load_dataset(\"glue\", \"mrpc\")\n", "checkpoint = \"bert-base-uncased\"\n", "tokenizer = AutoTokenizer.from_pretrained(checkpoint)\n", "\n", "\n", "def tokenize_function(example):\n", " return tokenizer(example[\"sentence1\"], example[\"sentence2\"], truncation=True)\n", "\n", "\n", "tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)\n", "data_collator = DataCollatorWithPadding(tokenizer=tokenizer)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from transformers import TrainingArguments\n", "\n", "training_args = TrainingArguments(\"test-trainer\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from transformers import AutoModelForSequenceClassification\n", "\n", "model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from transformers import Trainer\n", "\n", "trainer = Trainer(\n", " model,\n", " training_args,\n", " train_dataset=tokenized_datasets[\"train\"],\n", " eval_dataset=tokenized_datasets[\"validation\"],\n", " data_collator=data_collator,\n", " processing_class=tokenizer,\n", ")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "trainer.train()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(408, 2) (408,)" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "predictions = trainer.predict(tokenized_datasets[\"validation\"])\n", "print(predictions.predictions.shape, predictions.label_ids.shape)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "\n", "preds = np.argmax(predictions.predictions, axis=-1)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'accuracy': 0.8578431372549019, 'f1': 0.8996539792387542}" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import evaluate\n", "\n", "metric = evaluate.load(\"glue\", \"mrpc\")\n", "metric.compute(predictions=preds, references=predictions.label_ids)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def compute_metrics(eval_preds):\n", " metric = evaluate.load(\"glue\", \"mrpc\")\n", " logits, labels = eval_preds\n", " predictions = np.argmax(logits, axis=-1)\n", " return metric.compute(predictions=predictions, references=labels)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "training_args = TrainingArguments(\"test-trainer\", evaluation_strategy=\"epoch\")\n", "model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)\n", "\n", "trainer = Trainer(\n", " model,\n", " training_args,\n", " train_dataset=tokenized_datasets[\"train\"],\n", " eval_dataset=tokenized_datasets[\"validation\"],\n", " data_collator=data_collator,\n", " processing_class=tokenizer,\n", " compute_metrics=compute_metrics,\n", ")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "trainer.train()" ] } ], "metadata": { "colab": { "name": "Fine-tuning a model with the Trainer API or Keras", "provenance": [] }, "language_info": { "name": "python" } }, "nbformat": 4, "nbformat_minor": 4 }